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Abstract 
By using response surface methodology, Batch shaking biosorption of cobalt (II) 
experiments were conducted in order to examine the combined effects of operating 
parameters. The results indicate that magnesium nitrate performed as an effective 
biosorbent surface modifier, which increases the rate of adsorption capacity. At optimal 
conditions (initial pH 7.0, temperature 45◦C, biosorbent concentration 0.1 g/100ml, and 
initial cobalt concentration 300mg/l for Mg-treated biomass) the biosorption capacity 
of the algae for cobalt was found to be 80.55 mg/g. The Langmuir and Freundlich 
isotherms were applied to the equilibrium data. The results are best fitted by the 
Freundlich model. Evaluation of the experimental data in terms of biosorption 
dynamics showed that the biosorption of cobalt (II) onto algal biomass followed the 
pseudo-second-order dynamics well. Using the thermodynamic equilibrium coefficients 
obtained at different temperatures, the thermodynamic parameters (ΔG◦, ΔH◦ and ΔS◦) 
were also evaluated. 
 
Keywords: Biosorption, Response Surface Methodology, Pretreated Algae, Cobalt, 
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1. Introduction∗ 
Cobalt containing compounds discharged 
through different industrial activities 
constitute one of the major causes of water 
pollution. Heavy metals pose a significant 
threat to the environment and public health 
because of their toxicity, accumulation in the 
food chainand persistence in nature [1,2]. So 
it is necessary to remove cobalt at the time of 
release of effluent. There are some 
conventional methods for treatment of liquid 
effluent for removal of heavy metals such as 
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ion exchange, chemical precipitation, reverse 
osmosis, and co-precipitation which are 
designed to remove radionuclides and metal 
ions from the effluents [3]. These 
conventional techniques can reduce metal 
ions, but they do not appear to be highly 
effective due to the limitations in the pH 
range as well as the high material and 
operational costs [4]. Therefore, there is 
growing interest in using low-cost, easily 
available materials for the adsorption of 
metal ions. A low-cost adsorbent is defined 
as one which is abundant in nature, or is a 
by-product or waste material from another 
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industry. Biosorbent materials derived from 
suitable biomass can be used for the effective 
removal and recovery of heavy metal ions 
from industrial solutions. Many algae, yeasts, 
bacteria and other fungi are known to be 
capable of concentrating metal species from 
dilute aqueous solutions and accumulating 
them within their cell structure [5]. Among 
biosorbent materials algae have proved to be 
both economic and eco-friendly as they are 
abundantly available, have regeneration and 
metal recovery potentiality, lesser volume of 
chemical and/or biological sludge, high 
efficiency in dilute effluents, and a high 
surface area to volume ratio [6]. The cell 
walls of brown algae generally contain 
components such as cellulose and alginicacid 
which contain several functional groups 
(amino, carboxyl, sulphate and hydroxyl) that 
could play an important role in the 
biosorption process [7]. The binding strength 
of alkaline earth metals to alginic acid was 
found to decrease in the order Ba(II) >Sr (II) 
> Ca (II) > Mg (II) [8,9]. Haug interpreted 
the preferential binding of heavier ions to 
stereochemical effects, since larger ions 
might better fit a binding site with two 
distant functional groups [10]. Also, the 
preferential binding of larger ions can be 
attributed to stereochemical effects such as 
the coordination of the oxygen atoms 
surrounding the metal ion [11]. According to 
the trends, cobalt ion is preferable to replace 
magnesium instead of calcium ion because 
Mg(II) has less binding strength. So for 
pretreatment of biomass, Mg(II) was used as 
a surface modifier instead of other ions such 
as Ca(II). 
The aim of this study was to conduct a 
central composite design (CCD) analysis to 

find the significant factors that influenced the 
removal of cobalt from aqueous solution by 
marine brown algae Sargassum sp. and 
understand their impact on the process. The 
effect of some operating variables such 
aschemical modification of the biomass, 
temperature, pH, adsorbent dose and initial 
concentration of Co2+ on biosorption was 
studied using CCD, which gives a 
mathematical model that shows the influence 
of each variable and their interactions. In 
addition, the equilibrium, dynamic and 
thermodynamic parameters were calculated 
In the statistical design, the factors involved 
in an experiment are  simultaneously 
changed. The most important advantages are 
that not only the effects of individual 
parameters but also their relative importance 
in a given process are evaluated and the 
interaction of two or more variables can also 
be derived. This is not possible in a classical 
one factor at a time experiment [2]. 

 
2. Mathematical description 
The amount of metal uptake by algae was 
calculated from the differences between the 
metal quantity added to the biomass and the 
metal content of the supernatant using the 
following equation:  
 

ads

0

M
)CC(Vq −

=  (1) 

 
where q is the amount of metal ions adsorbed 
on the biosorbent at any time, t, in mg/g, V is 
the volume of metal containing solution in 
contact with the biosorbent in ml, C0 is the 
initial concentration of metal in mg/l, C is the 
metal concentration in the solution at any 
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time t (min) in mg/l, and Mads is the amount 
of added biosorbent on dry basis in g[12]. 
 
2-1. Dynamic parameters of biosorption 
It is known that the biosorption process is 
time-dependent; so in this study the pseudo-
first-order and pseudo-second-order dynamic 
models have been discussed to identify the 
rate and kinetics of sorption of cobalt on 
Sargassum sp. adsorbent.  
Pseudo-first-order Lagergren model 
considers that the rate of occupation of 
biosorption sites is proportional to the 
number of unoccupied sites. The linear form 
of the model is: 
 

3032
1
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tkqlog)qqlog( eqteq −=−
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where qeq and qt (mg g−1) are amount of 
cobalt adsorbed at equilibrium and at time t 
(min), respectively, and k1 (min−1) shows the 
equilibrium rate constant of pseudo-first-
order adsorption. k1 and qeq can be 
determined from the linear plot of log (qeq 
−qt) versus t. 
The adsorption dynamics may also be 
described by pseudo-second-order model. 
Pseudo-second-order model considers that 
the rate of occupation of biosorption sites is 
proportional to the square of the number of 
unoccupied sites and after being integrated 
and rearranged:  
 

t
qqkq

t

eqeqt

11
2

2

+=  (3) 

 
Where qeq and qt (mg g−1) are amount of 
cobalt adsorbed at equilibrium and at time t 
(min), respectively, and k2 (g mg-1 min-1) is 

the equilibrium rate constant of pseudo-first-
order adsorption. k2 and qeq can be 
determined from the linear plot of t/qt versus 
t. This model is more likely to predict 
dynamic behavior of biosorption with 
chemical sorption being the rate-controlling 
step. Due to the presence of greater number 
of metal ions in industrial wastewater, the 
sorption equilibrium was reached much faster 
due to faster occupancy of sorption sites by 
metal ions [2,13]. 
 
2-2. Equilibrium parameters of biosorption 
The biosorption isotherms are characterized 
by definite parameters whose values express 
the surface properties and affinity of 
biosorbent for different heavy metal ions 
[14]. Several isotherm equations have been 
used for the equilibrium modeling of 
biosorption systems. In this study, the 
Langmuir and Freundlich adsorption models 
were tested to determine the relationship 
between adsorbed cobalt ions on the algal 
cell (qeq) and unadsorbed cobalt ions in 
solution (Ceq). The most widely used 
isotherm equation for modeling equilibrium 
is the Langmuir equation, based on the 
assumption that there is a finite number of 
binding sites which are homogeneously 
distributed over the adsorbent surface, these 
binding sites have the same affinity for 
adsorption of a single molecular layer and 
there is no interaction between adsorbed 
molecules [5]. The linear form of Langmuir 
isotherm is given by the following equation: 
 

meqmeq qCbqq
111

+=  (4) 

 
where qeq (mg/g) is the amount adsorbed at 
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the equilibrium, Ceq (mg/l) the equilibrium 
concentration, qm (mg/g) is the Langmuir 
constant representing the maximum 
monolayer adsorption capacity and b(l/mg) is 
the Langmuir constant related to energy of 
adsorption and the affinity of the binding 
sites [1,15]. The equilibrium parameters (qm 
and b) are determined from the linear plot of 
1/qeq versus 1/Ceq.  
The adsorption data was also analyzed by 
Freundlich model. The Freundlich expression 
is used for heterogeneous surface energy 
term. The Freundlich isotherm equation is an 
exponential equation and therefore, assumes 
that as the adsorbate concentration increases, 
the concentration of adsorbate on the 
adsorbent surface also increases [5]. 
Freundlich equation is commonly presented 
as shown below: 
 

neqeq kCq
1

=  (5) 
 

The logarithmic form of Freundlich model is 
given by the following equation: 
 

eqeq C
n

kq log
1

loglog +=  (6) 

 

where k and n are constants related to the 
adsorption capacity and intensity of the 
adsorbent characteristics of the system, 
respectively. The fractional values of 
biosorbent surface indicate a favorable 
biosorption of metal ions onto biomass [16]. 
The plots of log qeq versus Ceq determine 
values of 1/n and k. 
 

2-3. Thermodynamic parameters of 
biosorption 
The determination of thermodynamics 
parameters has great importance in 

evaluating spontaneity and heat change for 
the biosorption reactions. The Gibbs free 
energy change of the adsorption process 
(ΔG°) is related to the standard 
thermodynamic equilibrium constant (Keq

°) 
of the biosorption system by the classic 
equation[17,18]: 
 

οο
eqKRTG ln−=Δ  (7) 

 

Where T is the absolute temperature (kelvin) 
and R is the universal gas constant which is 
8.314 (j/mol k). 
The apparent equilibrium constant (K'e) of 
the adsorption is defined as [17, 19]: 
 

eq

eqad
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C
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Where Cad,eq is the amount of adsorbed metal 
ion on the biosorbent per volume of the 
solution at equilibrium and Ceq is the 
equilibrium concentration of the metal ion in 
the solution. The Gibbs free energy change 
(ΔG°) reflects the feasibility and spontaneous 
nature of the process. At a given temperature, 
the higher the negative value of ΔG°, the 
more energetically favorable adsorption 
process.  
In order to determine the nature of the 
biosorption process regarding heat of 
adsorption and also affinity of biosorbent to 
metal ion, enthalpy changes (ΔH°), and 
entropy changes (ΔS°) should also be 
estimated. These parameters can be estimated 
by the van’t Hoff equation [17, 19]: 
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Where ΔH° and ΔS° can be obtained from 
the slope and intercept of a van’t Hoff plot of 
ln K° vs 1/T.  
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3. Materials and methods 
3-1. Preparation of biosorbents 
Samples of marine algae Sargassum sp. were 
collected from Persian Gulf on the coast of 
Qeshm, Iran. Algal samples were washed 
with tap water and distilled water to remove 
sand and excess sodium and potassium ions. 
After drying overnight at a maximum 
temperature of 55◦C to avoid degradation of 
the binding sites [14], the samples were 
grounded to an average particle size of 0.7 
mm. The biomasses were subsequently 
loaded with Mg2+ in a solution of 0.1 M 
Mg(NO3)2.6H2O (biomass concentration of 
10 g/l) for 24 h under slow stirring. Then 
pretreated biomass was washed several times 
with deionized water until a stable wash 
solution pH was reached and excess 
magnesium ions were removed from the 
biomasses. The Mg-pretreated biomasses 
were then dried overnight in an oven at 55ºC 
and subsequently natural algae and Mg-
pretreated algae were used for biosorption 
experiments. 
 

3-2. Preparation of synthetic metal solution   
A stock solution of cobalt, with 1000 ppm 
concentration was prepared using analytical 
grade (Co(NO3)2.6H2O). This solution was 
diluted depending upon requirements. All 
solutions were prepared in deionized water. 
The initial pH of cobalt solutions was 
adjusted with diluted or concentrated HNO3 
and NaOH solutions before mixing with the 
biosorbent. All chemicals used wereof 
analytical grade (Sigma Aldrich, Germany). 
 

3-3. Characterization test 
3-3-1. Energy dispersive X-ray spectroscopy 
(EDX) 
To determine the chemical composition of 
biosorbent before and after treatment by 0.1 

M Mg(NO3)2.6H2O and also after Co2+ 
sorption, a system of analysis for energy 
dispersive X-ray spectroscopy (EDX, 
RONTECH, Germany) was used.  
 
3-3-2. Analysis of cobalt concentration 
Dissolved cobalt concentrations in solution 
were assessed by an inductively coupled 
plasma atomic emission spectrophotometer 
(ICP-AES, Optima, 7300DV, USA). The ICP 
analyses were conducted at wavelength of 
228.616 nm. 
 

3-4. Batch adsorption experiments 
In order to determine the contact time 
required for the sorption equilibrium 
experiments, the sorption dynamics 
experiments were conducted on natural and 
Mg-pretreated algae first. 0.1 gram of 
biomass was added to a series of 250 ml 
Erlenmeyer flasks containing 100 ml of 100 
mg Co/l Co(NO3)2.6H2O solution. The flasks 
were agitated at 150 rpm and 25ºC for 24 h in 
a shaker. Samples were withdrawn at 
predetermined time intervals (2, 5, 15, 30, 
45, 60, 90, 120, 150, 180 and 1440 min). 
After appropriate dilution, the samples were 
analyzed by the ICP-AES for metal 
concentrations. According to the preliminary 
sorption dynamic tests, the equilibrium was 
reached after 90 min of contact. Batch 
adsorption experiments were conducted to 
study the effect of magnesium ion as a 
surface modifier of biomass, temperature, 
pH, initial cobalt concentration, and the 
dosage of biomass. Each experiment was 
carried out in 250 ml Erlenmeyer flasks 
containing 100mL Co(NO3)2.6H2O solution 
with known initial cobalt concentration 
which was mixed with different amount of 
biomass. To adjust the temperature, 
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Gallenkamp shaker was used, enabling us to 
set the temperature of the solution. The flasks 
were shaken at 150 rpm for a period contact 
time of 90min. The pH of initial solution was 
adjusted to the desired values with diluted or 
concentrated HNO3 and NaOH solutions 
before mixing with the biosorbent. Cobalt 
solution was filtrated through Whatman filter 
paper. Filtered samples were analyzed for 
residual cobalt ion concentration.  
 
3-5. Experimental design 
In this study, the effects of operating 
parameters were optimized using response 
surface methodology (RSM). RSM is 
essentially a particular set of mathematical 
and statistical methods for designing 
experiments, building models, evaluating the 
effects of variables, estimating interaction 
between variables and searching optimum 
conditions of variables to predict targeted 
responses [15, 16].The application of 
statistical experimental design techniques in 
sorption processes could result in improved 
product yields, reduced process variability, 
aswell as reduced development time and 
overall costs [20]. 
In this study, central composite design 
(CCD) was used for the RSM in the 
experimental design which is well suited for 
fitting a quadratic surface and usually works 
well for the process optimization [15, 
16].The CCD consisted of 2k factorial runs 
with 2k axial runs and r center runs. The 
center points were used to evaluate the 
experimental error and the reproducibility of 
the data. The independent variables were 
coded to the (−1,1) interval where the low 
and high levels were coded as −1 and +1, 
respectively. The axial points were located at 
(±α, 0, 0), (0,±α, 0) and (0, 0, ±α) where α is 

the distance of the axial point from center 
and makes the design rotatable[5]. In the 
study, α was fixed at 2.0. 
Therefore, central composite design with 
four numeric factors (initial cobalt (II) 
concentration: 50–300 mg/l, biosorbent 
concentration: 0.1–0.5 g/100ml, initial pH: 
2.5–7.0 and temperature: 15–45 ◦C) and one 
categorical factor at 2 levels (natural 
Sargassum sp and Mg- pretreated Sargassum 
sp. algae) was applied using Design-Expert 
version 7 (Stat-Ease Inc., Minneapolis, USA) 
as shown in Table 1. Performance of the 
process was evaluated by analyzing the 
response of biosorbent for cobalt (II) ions. 
The responses were biosorption capacity of 
natural and modified algae, y1 and y2 
respectively. 
In the optimization process, the responses 
can be simply related to chosen factors by 
linear or quadratic models. Aquadratic 
model, which also includes the linear model, 
is given as: 
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2

1
0  (10) 

 

where b0, bi, bii, bij are a constant, a linear 
coefficient, a square coefficient and an 
interaction coefficient, respectively [15, 21, 
22]. 
In this work a central composite design was 
used to estimate the effect of five 
independent factors (temperature, x1; initial 
concentration of cobalt (II), x2; biosorbent 
dosage, x3; initial pH, x4; natural brown algae 
and Mg- pretreated brown algae, x5) on the 
biosorption capacities (y1, y2) as the 
responses were processed for Eq. (10) 
including analysis of variance (ANOVA) to 
obtain the interaction between the process 
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variables and the responses. The quality of 
the fit of polynomial model was expressed by 

the coefficient of determination R2 and 2
adjR . 

The statistical significance was checked with 
adequate precision ratio and F-test [5]. The 
second-order polynomial models were 
represented as response, whilst keeping third 
variable constant. 
 
4. Results and discussion  
4-1. Statistical analysis 
In order to determine the significant terms 56 
runs were statistically analyzed with CCD 
design. The p-values were used as a tool to 
check the significance of every coefficient. 
The smaller the magnitude of p, the more 
significant the corresponding coefficient is. 
Values of p less than 0.05 indicate model 
terms are significant. In this case all five 
factors, AB (T, C0), BC (C0, Mads), BD (C0, 

pH) and BE (C0, Type of biosorbent) 
interaction terms are highly significant terms 
(p < 0.05). By eliminating the insignificant 
model terms automatically, the resulting 
ANOVA for the reduced quadratic model is 
summarized in Table 2. The final responses 
for the biosorption capacity of untreated and 
treated biomasses for cobalt (II) ions were 
obtained in Eqs. (11) and (12), respectively. 
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Table 1. The experimental range and levels of the control factors in the CCD. 

Variable Low axial (-α) 
Low factorial 

(-1) 
Center 

High factorial 
(+1) 

High axial 
(+α) 

x1(A): Temperature (°C) 15 23 30 38 45 

x2(B): Initial cobalt (II) 
concentration (mg/l) 

50 113 175 238 300 

x3(C): Biomass dose 
(g/100ml) 

0.1 0.2 0.3 0.4 0.5 

x4(D): pH 2.5 3.6 4.8 5.9 7 

 
Level 1  Level 2 

  

   

x5(E): Type of biosorbent 
Natural 

Sargassum sp. 
 

Mg- pretreated 
Sargassum sp. 

  

      

* α= 2 
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Table 2. ANOVA for the response surface reduced quadratic model for cobalt biosorption . 

Source Sum of squares df Mean square F value p-value 

Model 6424.25 12 535.35 386.89 < 0.0001 

A-T 39.13 1 39.13 28.28 < 0.0001 

B-C0 3255.71 1 3255.71 2352.86 < 0.0001 

C-Mads 2609.04 1 2609.04 1885.52 < 0.0001 

D-pH 18.03 1 18.03 13.03 0.0008 

E-E 218.63 1 218.63 158.00 < 0.0001 

AB 5.90 1 5.90 4.26 0.0451 

BC 22.18 1 22.18 16.03 0.0002 

BD 17.02 1 17.02 12.30 0.0011 

BE 27.10 1 27.10 19.59 < 0.0001 

B2 116.01 1 116.01 83.84 < 0.0001 

C2 49.87 1 49.87 36.04 < 0.0001 

D2 10.11 1 10.11 7.30 0.0098 

Residual 59.50 43 1.38   

Lack of Fit 52.89 37 1.43 1.30 0.4017 

Pure Error 6.61 6 1.10   

Cor Total 6483.75 55    

 
Non-significant value lack of fit shows the 
validity of the quadratic model for 
biosorption by Sargassum sp. biomass. The 
obtained values for the correlation between 
the actual and predicted response (R2) and 
coefficient adjusted R2 are 0.9908 and 
0.9883, respectively. These values, which are 
closer to 1.0 are in reasonable agreement for 
cobalt (II), indicating the better fitness of the 
reduced quadratic model in the experimental 
data. Adequate precision measures the signal 
to noise ratio and a ratio greater than 4 is 

desirable. The ratio of 77.361 indicates an 
adequate signal. This model can be used to 
navigate the design space.The CV value was 
found to be 3.13 for biosorption capacity. 
Since CV is a measure expressing standard 
deviation as a percentage of the mean, the 
smaller values of CV give better 
reproducibility. In general, a CV higher than 
10 indicates that variation in the mean value 
is high and does not satisfactorily develop an 
adequate response model [16]. Data in Table 
3 confirmed these results. 

 
Table 3. Statistical results of the ANOVA for reduced quadratic model. 

R2 

Adjusted R2 

C.V % 

Adequate Precision 

0.9908 

0.9883 

3.13 

77.361 
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The software calculated the expected 
responses and associated confidence intervals 
based on the prediction equations (Eqs. (11) 
and (12)). The 95% confidence interval (C.I.) 
is the range in which the process average was 
expected to fall 95% of the time, while the 
95% prediction interval (P.I.) is the range in 
which it was expected that any individual 
value would fall 95% of the time[23]. As 
shown in Table 5, the P.I. is larger (a wider 
spread) than the C.I. since more scatter in 
individual values is expected than in 
averages. In this Table, SE mean refers to the 
standard deviation associated with the 
prediction of an average value at the selected 
component-levels, while the standard 
deviation associated with SEpred. indicates 
the prediction of an individual observation at 
the selected factor levels. 
 
4-3. Effect of pretreatment on biosorption 
capacity and sorption mechanism  
The chemically modified biosorbents 
increase the stability of the biosorbent 
material and enhance the biosorbent 
properties[24]. The interactive effect of 
initial cobalt (II) concentration and type of 
biomass on the cobalt uptake of biomass 
holding other variables at their central values 
is shown in Fig. 3. The capacities of treated 
Sargassum sp. and untreated Sargassum sp. 
for cobalt ion at different concentration noted 
that the treatment of Mg(NO3)2 had enhanced 
the adsorption capacity. At the sorption of 
cobalt, the adsorption capacity for untreated 
Sargassum sp. and treated sargassum sp. 

increased from 15.43 to 45.49 mg/g and 
16.37 to 52.45 mg/g with the increase of the 
initial concentration in 50–300 mg/l, 
respectively. According to the Table 2, the 
interaction between initial cobalt (II) 
concentration and type of biomass (BE) was 
highly significant (p<0.0001). EDX spectra 
taken in spot profile mode showed the 
enhancement of magnesium peaks on EDX 
spectra of biomass after treatment compared 
with  biosorbent    before   Mg-treatment 
(Fig. 4a, b) and also confirmed the presence 
of cobalt (Fig.4c), suggesting bonding of 
metal cations onto algae surface by 
interactions with negatively charged 
functional groups. Additionally, for the 
samples after biosorption, we observed that 
the peaks of Mg on EDX spectra of 
biosorbent after metal sorption were omitted 
(Fig. 4c).The amount of magnesium and 
cobalt of the untreated Sargassum sp., Mg-
treated biomass and cobalt-loaded biomass 
was determined using anEDX spectrometer, 
given in Table 6. Our data suggest that Co2+ 
ions have replaced Mg2+ ions from 
biosorbent surface and ion exchange 
mechanism participates in cobalt biosorption. 
The same conclusions were also postulated 
by others [25-28]. But, due to the complexity 
of biomaterials, maybe other mechanisms 
such as coordination and chelation of metals, 
adsorption and surface complexation of 
cations with exposed functional groups on 
the biomass  act simultaneously, to varying 
degrees, depending on the biosorbent and the 
solution chemistry[8, 29-31].  

 
Table 5. Point prediction of the responses at the optimal conditions. 

Response Prediction SE Mean 95%C.I.  low 95% C.I. high SE pred. 95% P.I.low 
95% P.I. 

high 

q (mg/g) 80.2094 1.94 76.29 84.13 2.27 75.63 84.79 
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by researchers for a variety of adsorbate-
adsorbent systems [3, 32]. An increase of 
metal uptake by increasing initial metal ion 
concentration is a result of the increase in the 
driving force of the concentration gradient, 
rather than increase in the initial metal ion 
concentration[33]. The initial concentration 
provides an important driving force to 
overcome all mass transfer resistance of 
cobalt between the aqueous and solid phases.  
The effect of temperature on the cobalt 
uptakeof Mg-treated biomass holding other 
variables at their central values is shown in 
Fig. 6. The biosorption capacity of treated 
Sargassum sp. increased with the increase in 
biosorption temperature and initial cobalt (II) 
concentration.The maximum biosorption 
capacity occurred at 45◦C. However, 
temperature variation between 15 and 45◦C 
slightly increases the metal uptake capacity 
from 38.63 to 42.24 mg/g, respectively. The 
uptake capacity was calculated at pH 4.8, 175 
mg/l initial cobalt (II)   concentration  and 
0.3 g biomass dosage. These results indicate 
the negligible interaction effect of these two 
parameters on biosorption capacity which 
confirmed the result of ANOVA as shown in 
Table 2 (p value = 0.0451).The increment of 
sorption capacity with increasing temperature 
suggests an endothermic nature of the 
sorption of cobalt by this dried biomass. 
Several studies have indicated the same 
effect of temperature [13, 34-36]. Higher 
temperature causes rupture that enhances the 
number of available active sites, surface 
activity, kinetic energy of the solute, and 
affinity of sites for metal ions which lead to 
an increase in the probability of the collision 
between active surface binding sites and 
metal ions and a decrease in the thickness of 
the boundary layer surrounding the 
biosorbent [13, 35-37]. However, the 
temperature higher than 55ºC caused a 
change in the texture of the biomass and thus 

reduced its sorption capacity [14, 38]. In 
addition, the decrease of biosorption 
efficiency with the increase of temperature is 
due, most probably, to the desorption 
tendency of heavy metals from biosorbent 
surface. [39] Therefore, it depends on the 
type of metal and adsorbent. That is the 
reason for having different behavior of heavy 
metal uptake with temperature [38]. 
The effects of biomass dosage(BC) can be 
inferred from the response plot (Fig. 7), 
holding the temperature at 30◦C and pH at 
4.8. The biosorption capacity was decreased 
from 59.13 to 29.64 mg/g for the Co2+ ions 
with increasing the biosorbent dosage from 
0.1 to 0.5 g, respectively.The uptake capacity 
was calculated at pH 4.8 and initial metal ion 
concentration 175mg/l. At higher biosorbent 
dose the uptake capacity is low, perhaps due 
to the unsaturation of biosorption sites 
through the biosorption reaction and due to 
the particle interaction, such as aggregation, 
resulted from high biosorbent concentration 
[40]. Such aggregation would lead to 
decrease in total surfacearea of the 
biosorbent and an increase in diffusional path 
length[41]. 
 
4-5. Confirmatory experiments 
For validation of the statistical model, two 
experiments were performed under optimal 
conditions. Table 7 presents the experimental 
results under the optimal condition compared 
with the simulated values from the proposed 
model (Eq. (12)). The experimental 
responses for biosorption capacity were 
81.11 and 79.98 mg/g which indicate that the 
experimental values are very close to the 
predicted values and hence, the model is 
successful in predicting the responses.  
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In our study, the positive value of ΔH° 
confirms the endothermic adsorption nature 
of the process. The positive value of ΔS° 
indicates the affinity of the adsorbent for 
cobalt and also confirms the increased 
randomness at the solid-solution interface 

during biosorption [2, 17]. Value of the ΔG°, 
ΔH° and ΔS° from the present study was 
compared with other metal adsorption 
reported in previous studies and are compiled 
in Table 11.  

 
 
 
Table 10. Thermodynamic parameters and corresponding correlation coefficient for Co (II) biosorption on Mg-
treated Sargassum sp. 

Temperature (°C) 
Thermodynamic parameters and corresponding R2 value 

ΔG° (J/mol) ΔH° (J/mol) ΔS° (J/mol K) R2 

15 -397.935862 535.7625 3.239966 0.999 

23 -422.706613    
30 -445.18927    
38 -471.420463    
45 -495.217534    

 
 
Table 11. Comparison of thermodynamic parameters with other metals adsorption. 

Heavy 
metal ion 

Sorbent 
Temperature 

(°C) 
ΔG° 

(kJ mol-1) 
ΔH° 

(kJ mol-1) 
ΔS° 

(J mol-1 K-1) 
Reference 

Pb2+ Peanut shells 20, 30, 40 -24.25 to -25.00 -16.68 25.16 [18] 

Pb2+ Sargassumilicifolium 20, 25, 30 -2.6 to -3.6 0.027 0.102 [13] 

Sr2+ Activated carbon 
20, 30, 40, 

60 
-12.61 to -20.44 44.77 195.847 [45] 

Cr (VI) Sargassummuticum 20, 50 -7.3 to -8.7 7.1 49.1 [36] 

Pb2+ 
Ni2+ Cd2+ 

Orange peel 30 -3.77, -4.22, -4.99 - - [46] 

U Padina sp. 
10, 20, 30, 

40 
-6.549 to -5.914 -12.552 -21.408 [17] 

Cu2+ Cd2+ 
Pb2+ 

Caulerpalentillifera 20, 30, 40 
-16.4 to -18.5 
-13.4 to -17.2 
-17.9 to -19.7 

13.9 
42.3 
8.28 

103 
191 
89.3 

[35] 

Ni2+ 
S. muticum 
G. caudate 

20, 30, 50 - 
-29.7 
-16.0 

-90.3 
-47.7 

[47] 

Co2+ Lemon peel 25, 45 -37.47, -38.56 -21.20 54.61 [1] 

Sr2+ Activated carbon 20, 30,40,60 -36.61 to -41.75 0.036.88 125.44 [48] 

Co2+ Sargassum Sp. 
15, 23, 30, 

38, 45 
-0.397 to -0.495 0.535 3.24 This work 
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5. Conclusions 
In this study, central composite design 
(CCD) was used for the RSM in the 
experimental design and proved to be an 
efficient method for testing the effect of 
operating conditions and their interactions on 
cobalt uptake by the brown algae Sargassum 
sp. The interactive effects of five 
independent factors: initial pH of solution, 
initial concentration cobalt (II), temperature, 
biosorbent dosage, and biomass treatment on 
the biosorption capacities were estimated. A 
reduced quadratic model was obtained to 
predict the biosorption capacity. ANOVA 
results confirmed that there was significant 
agreement between the model and 
experimental data. The optimum biosorption 
conditions were determined as Mg-treated 
biomass, initial pH 7.0, temperature 45◦C, 
biosorbent dosage 0.1 g/100ml and initial 
cobalt (II) ion concentration 300 mg/l. At 
optimum biosorption conditions, the 
biosorption capacity of Mg-treated biomass 
for cobalt (II) ions was found to be 80.55 
mg/g. The results are best fitted by the 
Freundlich model. The biosorption of cobalt 
(II) onto algal biomass followed the pseudo-
second-order dynamics well. The calculated 
thermodynamic parameters (ΔG◦, ΔH◦ and 
ΔS◦) showed that the process was feasible, 
spontaneous and endothermic at the 
temperature ranges of 15–45◦C. 
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Nomenclature 
b the Langmuir constant (l/mg) 
b0, bi 
and bij 

linear and quadratic interaction 
coefficients, i and j = 1-5 

C metal ion concentration at any 
time (mg/l)  

C0 initial metal ion 
concentration(mg/l) 

Ceq residual metal ion concentration 
at equilibrium (mg/l)   

C.I. confidence interval (-) 
C.V coefficient variation (-) 
k adsorption capacity (-) 
n biosorption intensity (-) 
P.I. prediction interval (-) 
q amount of biosorbed metal perg 

of biosorbentat any time (mg/g)  

qeq the amount of biosorbed metal 
per unit weight of biosorbentat 
equilibrium(mg/g)    

qexp experimental amount of 
biosorbed metal per unit weight 
of biosorbent at equilibrium 
(mg/g) 

qm maximum capacity of biosorbent 
qpre predicted amount of biosorbed 

metal per unit weight of 
biosorbent at 
equilibrium by software(mg/g) 

R2 correlation coefficient 
R2

adj adjusted correlation coefficient 
Mads amount of biosorbent (g) 
t time (min) 
xi independent variable, i=1-5 
y  response (-) 
V volume of the solution (l) 
T  Solution temperature (ºC) 
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