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Abstract 
Due to wide application of styrene for production of different materials, it is considered 
as an important product in industry. Therefore, optimizing styrene production 
conditions is of great importance in petrochemical industry. In this paper, styrene 
production reactors of Tabriz Petrochemical Complex are modeled using Artificial 
Neural Network (ANN) model and Adaptive Neuro Fuzzy Inference System (ANFIS). 
Comparison of two models revealed that the neural networks are more reliable. The 
process of design and evaluation of models are carried out using industrial data which 
show credibility of designed models. The neural networks are designed to predict the 
styrene output from reactors as a function of effective input parameters on the styrene 
production. Predictions of designed neural networks were used to study the effect of 
each variable, such as oxygen flow rate and steam oil ratio, on the amount of styrene 
produced. Also, the optimal values of effective variables for maximum production of 
styrene were obtained. Furthermore, in order to obtain accurate results, catalyst 
deactivation of styrene reactors has been modeled using Fuzzy Inference System. As a 
result, catalyst activity as a function of time is obtained. 
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1. Introduction 
Styrene Monomer or Vinyl Benzene is one of 
the most important monomers used in 
petrochemical industries for production of 
polymeric materials such as polystyrene, 
acrylonitrile-styrene, acrylonitrile-butadiene-
styrene (ABS), and latex styrene-butadiene 
[1]. Due to wide application of styrene for 
production of various materials, it is 
produced in large amounts in petrochemical 
units. It must be mentioned that in 2012, 

styrene monomer production worldwide 
exceeded 26.4-million tonnes [2]. Therefore, 
finding the optimal conditions for styrene 
production in petrochemical reactors has 
great economic value. The most important 
techniques for commercial production of 
styrene are catalytic dehydrogenation of 
ethyl benzene and oxidation of ethyl benzene 
to ethyl benzene hydro peroxide after which 
ethyl benzene hydro peroxide reacts with 
propane in order to  produce   styrene   and  
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propylene oxide [1,3-4]. Catalytic 
dehydrogenation route using potassium 
promoted iron oxide as a catalyst has been 
used to produce most of the required styrene 
since 1957 [5, 6]. Catalyst deactivation is a 
serious issue that decreases production of 
styrene monomer. On the other hand, the 
great need of industry for styrene production 
forces producers to increase production rate. 
This results in hasty catalyst deactivation and 
it seems to be a somewhat inevitable process 
in styrene monomer reactors. 
In order to find the optimal condition, such 
as steam oil ratio or temperature for styrene 
production to obtain high productivity, 
researchers have conducted further 
investigations to study various aspects of this 
reaction. During the last decades, a great deal 
of effort was put into studying the modeling, 
simulation, and optimization of styrene 
reactors [7-9]. Sheel and Crow [10] modeled 
adiabatic styrene reactor using pseudo- 
homogeneous model to determine rate 
constants and heat of reactions in industrial 
styrene reactor. This model has been widely 
used by many researchers for simulation and 
optimization of styrene production reactors 
[8, 11]. A rigorous heterogeneous model was 
developed by Elnashaiea et al. [12] to extract 
intrinsic  data from industrial reactors.  Lee 
et al. [9] modeled the ethylbenzene 
dehydrogenation reaction into styrene by 
proposing a set of intrinsic rate equations. 
This kinetic model satisfied the experimental 
data including temperature, feed molar ratios 
of steam to ethylbenzene, that of styrene to 
ethylbenzene, and hydrogen to ethylbenzene 
ratio. Some studies were focused on the 
simultaneous optimization of multiple 
objectives [8, 11]. Yee et al. [8] carried out 

multi objective optimization to derive 
optimal conditions for adiabatic and steam-
injected styrene reactors using non-
dominated sorting genetic algorithm 
(NSGA). They used kinetic models for 
simulation of reactors, and NSGA for 
optimization. It was found that NSGA could 
be a reasonable method for multi-objective 
optimization and also the optimal results are 
accurate in case of several measurements [8]. 
Artificial neural networks can correlate the 
output data with the input data according to 
preferred algorithm, which is introduced by 
the researcher. Neural network modeling has 
been widely applied in different areas of 
science including chemical engineering [13, 
14]. Kito et al [14] used neural network 
modeling to estimate catalytic performance 
in the oxidative dehydrogenation of 
ethylbenzene on different catalysts. In a 
research conducted by Lim et al. [15] styrene 
monomer reactor system was modeled by 
taking into account the catalyst deactivation. 
The model is composed of a mathematical 
model and a neural network model. 
Moreover, optimization of variables was 
conducted by holding other operating factors 
constant at their average values. 
In this work, styrene production reactors of 
Tabriz Petrochemical Complex were 
modeled using Artificial Neural Network 
(ANN). Afterward, the trained neural 
network was used to study the effect of 
parameters such as steam oil ratio and 
oxygen flow rate on the styrene monomer 
production. The main objective of this work 
is to optimize the styrene monomer 
production by considering the mentioned 
parameters. Since the catalyst deactivation 
could be an effective parameter on the 
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production and optimization of styrene 
monomer, catalyst deactivation is taken into 
consideration and its activity as a function of 
time is studied. 
 
2. Process description 
The ethylbenzene dehydrogenation reaction 
(Reaction (1)) into styrene monomer is an 
endothermic reaction [10]. This reaction is 
conducted in presence of steam over iron 
oxide based catalyst at temperatures above 
600°C. Styrene reactors of Tabriz 
Petrochemical Complex are radial and 
adiabatic. In the reaction unit, ethyl benzene 
is dehydrogenated in three fixed bed reactors 
connected in series [16]. The schematic of 
styrene monomer unit is shown in Fig. 1. 
 
C6H5 – CH2CH3 ↔ C6H5 – CH = CH2 + H2   
 Reaction (1) 
 

 

Figure 1. Schematic of styrene monomer reactors. 
 
The feed to this unit is azoetrope mixture of 
steam, fresh ethylbenzene and recycled 
unreacted ethyl benzene from the third 
reactor, which are introduced to the first 
reactor. Afterwards, the outlet of the first 
reactor is mixed with superheated steam, into 
which the oxygen is injected from oxygen 

package, and is directed to the second 
reactor. In the same way, the outlet of the 
second reactor is mixed with vapor, with 
oxygen injection, and is introduced to the 
third reactor [16]. 
 
3. Results and discussion 
3-1. Neural network modeling and results 
In the mathematical model, estimation of 
styrene output from styrene monomer 
reactors is possible by using balance 
equations and catalyst activity as a function 
of time. The catalyst activity decreases 
during reaction. Four major parameters, 
including coke formation, promoters loss or 
their redistribution, catalyst reduction, 
physical degradation of catalyst, have been 
considered to cause catalyst deactivation. 
Since these parameters interact with each 
other and occur simultaneously, calculation 
of catalyst deactivation is complicated [1, 
17]. Therefore, neural network modeling can 
be a suitable alternative to evaluate styrene 
monomer production and catalyst 
deactivation. In artificial neural network 
modeling, a set of input data along with 
output data are given to neural network. 
Neural network calculates a set of output 
data and it repetitively adjusts its own pattern 
using the given algorithm to make calculated 
output data as close as possible to the given 
output data. Then, the trained network 
pattern is used to calculate unknown output 
data according to the input data. Styrene 
monomer reactor modeling by neural 
networks was carried out using data from 
styrene monomer reactor unit of Tabriz 
Petrochemical Complex from 2007 to 2010. 
A set of 75% of data was randomly selected 
for training of network and the rest was used 
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Third reactor Second reactor First reactor 

Oxygen 

Ethylbenzene 
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for its validation. Various structures of neural 
networks were examined. The optimal 
structure of neural network was obtained 
using three layers. In all models the hidden 
layer and the output layer were trained using 
tan-sigmoid and pure-line transfer functions, 
respectively, and Levenberg-Marquardt 
algorithm was used for network training [18]. 
All three reactors were modeled by neural 
network. All three reactors are affected by 
parameters such as steam oil ratio and 
oxygen flow rate. Therefore, in order to 
avoid repetition, only the results of the third 
reactor are reported here. Moreover, the 
results of two former reactors, first and 
second reactor, are elliptical at third reactor 
and it is the reactor that produces ultimate 
styrene. The neural network used for this 
reactor includes 16  neurons in  its hidden 
layer, as seen in Fig. 2. The performance of 
neural network for trained data and test data 
for the third reactor is shown in Figs. 3-4, 
respectively. The value of total relative error 
for test data from ANN is obtained 2.1%, 
which shows the validity of designed neural 
network.  
 

 

Figure 2. Schematic of neural network algorithm. 

3-2. Selection of input parameters for the third 
reactor 
The parameters which affect styrene 
production are reactants flow rate, 
temperature, and vapor flow rate. In order to 
consider the effect of these parameters, the 
input layer of neural network for the third 
reactor includes input temperature of 
oxidation bed, input temperature of 
dehydrogenation bed, Oxygen flow rate, 
steam oil ratio, ethyl benzene input flow rate, 
and styrene monomer output from the second 
reactor. The latter parameter is used from 
estimated values of designed neural network 
for the second reactor. 
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Figure 3. Performance of designed neural network for 
trained data of output styrene monomer. 
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Figure 4. Performance of designed neural network for 
test data of output styrene monomer. 
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The neural network was used to study the 
effect of each parameter, steam oil ratio and 
oxygen flow rate, on the styrene production 
and also to obtain the optimal conditions. 
Hence, one parameter was changed in the 
range industrial data, which are being used in 
Tabriz Petrochemical Company, while others 
were kept constant. In order to study the 
effect of steam oil ratio on styrene 
production, it is necessary to keep the 
remaining parameters constant. The constant 
values  of  these  parameters  are  listed in 
Table 1. It must be mentioned that the 
constant values were the average of three 
years of styrene unit production.  
Fig. 5 shows the effect of steam oil ratio at 
the input of the third reactor on styrene 
production. Increase of steam oil ratio (up to 
2) causes supply of more heat to reactor and 
leads to more styrene production due to 
endothermic reaction of direct 
dehydrogenation of ethylbenzene to styrene 
[3]. But further increase in steam oil ratio 
around 2 to 2.4 does not effectively increase 
styrene monomer output. This refers to coke 
formation on the catalyst surface [1], which 
retards dehydrogenation of ethylbenzene. It 
should be noted that coke formation causes 
blockage of catalyst active sites and reduces 
catalyst activity [19]. Finally, formation and 
removal of coke on the surface of catalyst 
reaches the equilibrium (approximately at 

2.4) and increase of steam oil ratio leads to 
gasification of coke precipitated on the 
surface of catalyst which results in more 
styrene production [1]. Furthermore, it is 
reported in the literature [20] that below a 
critical steam oil ratio catalyst deactivation 
occurs in ethylbenzene dehydrogenation, 
which confirms the results. Around steam oil 
ratio of 2.4, equilibrium shifts to produce 
more styrene and styrene monomer output 
increases as steam oil ratio increases. As it 
was mentioned before in this paragraph, this 
was expected due to endothermic reaction of 
dehydrogenation of ethylbenzene which 
plays an important role at higher 
temperatures. 
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Figure 5. Variation of styrene monomer predicted by 
neural network, versus steam oil ratio. 
 
 

 
Table 1. Values of parameters to study the effect of steam oil ratio. 

Input Temperature of 
Oxidation Bed (ºC) 

Input Temperature of 
Dehydrogenation Bed (ºC) 

Ethylbenzene 
Feed Flow (kg/h) 

Oxygen Gas 
Flow (kg/h) 

Effluent Styrene 
From Second 

Reactor (kg/h) 

545 626 16739 586.8 8992 
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In order to study the effect of oxygen flow 
rate on the styrene output, it is necessary to 
keep the rest of the parameters constant. 
These  process  conditions  are  listed in 
Table 2. Styrene monomer output as a 
function of oxygen flow rate is shown in Fig. 
6. Constant values of the process conditions 
are listed in Table 2. Styrene production 
increases as oxygen flow rate increases, this 
is because of oxidation of more hydrogen to 
supply heat to the endothermic reaction and 
also removal of hydrogen which shifts the 
equilibrium reaction to produce more 
styrene, as neural networks predict well. At 
higher oxygen flow rates styrene production 
decreases because of oxidation of styrene. As 
it can be seen in Fig. 6, in the third reactor 
the oxygen flow rate is low. There are two 
reasons for this. First, the output temperature 
of the second reactor is high, and also in the 
second reactor, higher values of steam oil 
ratio are used, as both of them increase the 
inlet temperature of the third reactor, less 
hydrogen oxidation is required to supply heat 
for the reaction. Second, in the third reactor, 
due to hydrogen removal from the second 
reactor, the ratio of styrene to hydrogen is 
high and consequently styrene will be 
oxidized more even at low oxygen gas flow. 
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Figure 6. Variation of styrene monomer estimated by 
neural network, versus oxygen flow rate. 
 
Furthermore, these reactors were modeled 
using ANFIS. ANFIS is a hybrid system of 
neural network and fuzzy system which uses 
Sugeno fuzzy inference system and neural 
network in order to enhance the performance 
of the system. In this system, a portion of 
input and output data is used for system 
training and the other portion of input and 
output data is used for system testing. The 
relative errors of this modeling are 
summarized in Table 3 and compared with 
artificial neural network. As can be seen, the 
ANFIS model is not as efficient as ANN. 
Hence, neural network model is more 
suitable for modeling of styrene reactors. 

 
Table 2. Process variables of the third reactor to study the effect of oxygen flow rate. 

Input Temperature 
of Oxidation Bed (ºC) 

Input Temperature of 
Dehydrogenation Bed 

(ºC) 

Ethyl Benzene 
Feed Flow 

(kg/h) 

Weight Ratio of 
Steam Oil 

(kg/kg) 

Output Styrene 
From Second 

Reactor (kg/h) 
545 626 16739 1.93 8992 

 
Table 3. Relative error of the third reactor modeling using ANFIS and ANN. 

 Relative Error of Training Data (%) Relative Error of Test Data (%) 
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ANN 1.41 2.10 
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3-3. Selection of optimal variables  
The optimal value of each variable could be 
estimated by studying ANN predicted 
diagrams of styrene production variation 
versus each of the variables. This may result 
in economic production of styrene monomer 
which is the purpose of this study. In case of 
steam oil ratio, since the expense of steam 
production is relatively high, the optimal 
value is achieved where the slope of styrene 
monomer is the highest (Fig. 5), which shows 
that a small increase in steam oil ratio 
effectively increases styrene monomer 
output. The differential of styrene monomer 
output against steam oil ratio, i.e. slope 
variation of styrene monomer-steam oil ratio 
curve, is indicated in Fig.7. According to Fig. 
7, the first maximum point cannot be taken as 
an optimal value, since the lower steam oil 
ratio causes coke formation problem. 
Increasing steam oil ratio around first 
maximum point is not effective since coke 
formation takes place, as mentioned before 
(see 3.2). On the other hand, as steam oil 
ratio increases, the temperature increases and 
coke removal takes place. Hence, the second 
maximum point shows the optimal value, 
which styrene monomer output increases as 
steam oil ratio increases. At this point, the 
styrene  monomer output is about 12804 
kg.h-1. In case of oxygen flow rate, according 
to Fig. 6, the highest styrene monomer output 
is achieved around 487.4 kg.h-1 which 
coordinates to optimal value of oxygen flow 
rate. This is due to the simple production of 
oxygen which does not limit its use as it does 
in case of ethyl benzene and vapor. The 
optimal values for each of three reactors are 
summarized in Table 4. It must be mentioned 
that all of the optimal values are in the range 

of industrial data, which are being used in 
Tabriz Petrochemical Company, and 
therefore are reliable. 
 

 

Figure 7. Differential of styrene monomer output as a 
function of steam oil ratio. 
 
Table 4. Optimal values predicted by artificial neural 
network. 

First Reactor 
Steam Oil Ratio 1.62 

Input Ethyl Benzene 
(kg/h) 

11732 

Second 
Reactor 

Steam Oil Ratio 2.48 

Oxygen Gas Flow (kg/h) 772.9 

Third 
Reactor 

Steam Oil Ratio 2.59 

Oxygen Gas Flow (kg/h) 487.4 

 
To compare the model data with the 
industrial data, the optimal value of each 
variable for styrene production is compared 
with the designed value by UOP Company 
(Table 5) [16]. These values were predicted 
by keeping the rest of the variables constant. 
In the case of input ethyl benzene and steam 
oil ratio for all three reactors, the maximum 
styrene production is recommended. 
However, in the case of oxygen flow rate, the 
maximum styrene production as a function of 
oxygen flow rate is suggested. 
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Table 5. Comparison of optimal values predicted by 
model and designed values by UOP.  

Variables 
Values 

Predicted 
by Model 

Designed 
Values by 

UOP 
Input Ethyl Benzene 
to the First Reactor 

(kg/h) 
16954 17781.7 

Steam Oil Ratio of the 
First Reactor 

1.75 1.28 

Steam Oil Ratio of the 
Second Reactor 

2.26 1.569 

Steam Oil Ratio of the 
Third Reactor 

2.59 1.892 

Oxygen Flow to the 
Second Reactor (kg/h) 

755.5 743.8 

Oxygen Flow to the 
Third Reactor (kg/h) 

487.4 515.4 

 
As it can be seen in Table 5, the values of 
input ethyl benzene and oxygen flow are 
close to the designed values of UOP, but in 
the case of steam oil ratio, the recommended 
values by neural network differs 
significantly. 
 
3-4. Catalyst deactivation 
Due to the measurement problems for 
catalyst deactivation in styrene reactors, 
obtaining an accurate model for styrene 
catalysts deactivation has not been possible 
until now. Artificial neural network and 
Fuzzy Inference System (FIS) are the most 
suitable methods to model catalyst 
deactivation, since they only require input 
and output data. In this part, deactivation of 
catalyst is investigated and a model is 
derived for catalyst deactivation. 
Fuzzy inference system (FIS) is a way of 
mapping input data to output data using 
fuzzy logic. In FIS, the input data are 
fuzzified and transformed into the values, 

then they are evaluated by rule evaluator and 
at the end the values are transformed to 
output by defuzzification. One of the widely 
used fuzzy systems is Sugeno method. FIS 
uses a set of input data for training and the 
remaining data for testing the method. 
During ethylbenzene dehydrogenation, six 
independent reactions (Reaction (2) to (6)) 
including a major reaction of ethylbenzene 
dehydrogenation into styrene and five side 
reactions occur [10].  
 
C6H5CH2CH3 → C6H6 + C2H4 
 Reaction (2) 
 
C6H5CH2CH3 → C6H5CH3 + CH4 
 Reaction (3) 
 
2H2O + C2H4 → 2CO + 4H2 Reaction (4) 
 
H2O + CH4 → CO + 3H2 Reaction (5) 
 
H2O + CO → CO2 Reaction (6) 
 
Elnashaie et al. [12] presented kinetic 
equations for the above mentioned reactions 
using power law of kinetic model. The 
kinetic equation for styrene reaction is 
formulated as follows: 
 

2

90891 4

1

8320
.

St HRT
EB EB

P P
r e . P

K
− ⎛ ⎞

− = −⎜ ⎟
⎝ ⎠

 (1) 

 

where rEB is reaction rate, PEB is partial 
pressure of ethylbenzene, PSt is partial 
pressure of styrene, 

2HP is partial pressure of 

hydrogen component, T is the temperature, R 
is gas constant and K1 is the rate constant. 
Since the proposed reaction rate constants 
[12] are intrinsic, they could be used for any 
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reactor condition. The rate constant of this 
reaction is calculated as follows: 
 

2
1 2 0 3 0

1
( c c T c T )K exp( )RT

+ += −  (2) 

 
where the c1, c2 and c3 are constant values 
and are equal to 122725.157 kJ kmol-1, -
126.267 kJ kmol-1 K-1 and -٢.١٩×١٠۴-3kJ 
kmol-1 K-2. 
Catalyst activity of third reactor based on the 
bed average temperature (T) and catalyst 
functioning time (t) were estimated here. It 
must be mentioned that in fuzzy logic system 
the output temperature of each reactor is 
estimated by input variables of each reactor. 
Catalyst activity as a function of time is as 
follows: 
 

rete of reaction at time tactivity
rate of reaction by fresh catalyst

=  (3) 

 
The objective of this part is to estimate 
catalyst activity as a function of temperature 
to obtain constant conversion. Combining 
Equation (1) to (3): 
 

2

90891 4

2
1 2 0 3 0

8320
.

STY HRT
EB EB

P P
r e ( P )

c c T c Texp RT

α
−

− = −
⎛ ⎞+ + +−⎜ ⎟
⎝ ⎠

 

 (4) 
 
where a is the catalyst activity. The 
conversion will be in a steady level, if 

1

11( )
K

α−  is constant. When the catalyst 

activity begins to decrease gradually, the 
temperature has to be increased to keep it in 
a steady manner. 

At the beginning of process, when the 
catalyst is fresh, the catalyst activity is 1 and 
the temperature is assumed to be T0. 
 

0

90891 4

2
1 2 0 3 0

0

18320 1 1
.

RTe . cte
( c c T c T )exp( )RT

−
⎛ ⎞
⎜ ⎟
− =⎜ ⎟

+ +⎜ ⎟−⎜ ⎟
⎝ ⎠

 

  (5) 
 

Based on Equation (5), kinetic reactions and 
R=8.314 J mol-1 k-1, the final equation for 
catalyst activity as a function of bed average 
temperature (T) is as follows: 
 

0

4
1 1 010932 331

0

4

11 14761 265 1458 2 639 10

11 14761 265 1458 2 639 10

. ( )
T T

.exp( . T )
T

e

.exp( . T )
T

α

−

− −

−

⎛ ⎞
⎜ ⎟
⎜ ⎟−
⎜ ⎟− + + × ×⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
−⎜ ⎟

⎜ ⎟− + + × ×
⎝ ⎠

 

  (6) 
 
Equation (6) is obtained by assuming 
constant conversion as temperature increases. 
A set of 75% of data was randomly selected 
for training of network and the rest was used 
for its validation. In order to predict the 
output temperature of third reactor, FIS was 
used to model each reactor. First, various 
fuzzy models were created using Gaussian 
membership function and according to 
different clusters’ radius. Then, in order to 
determine the efficiency of each model, 
results of created models were compared 
with industrial data and total relative error 
for each model was calculated. The best 
system is the one with the least total relative 
error. Performance of fuzzy system for 
trained data and test data of third reactor 
along with transverse curve and regression 
coefficients are shown in Figs. 8-10. 
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Figure 8. Comparison of estimated output 
temperature using Sugeno fuzzy model with industrial 
trained data. 
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Figure 9. Comparison of estimated output 
temperature using Sugeno fuzzy model with industrial 
test data. 
 

 

Figure 10. Transverse curve and regression 
coefficient of estimated output temperature by Sugeno 
Fuzzy model and industrial data. FIS. 
 
Using predicted temperature by Fuzzy model 
and Equation (6), catalyst activity of the third 

reactor was calculated and activity curves 
versus process time were created. Then, the 
catalyst activities as a function of process 
time were calculated. Catalyst activity versus 
process time is shown in Fig. 11. 
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Figure 11. Catalyst deactivation versus time. 
 
Catalyst deactivation was correlated versus 
time. The result is: 
 
f ( t ) A.exp( B .t )=   (7) 
 
where A=1.021 and B=-0.0004897. 
The error of correlation is reported as R2 and 
root mean square error which are equal to 
0.9649 and 0.02237, respectively. The error 
values show that the Equation (7) is a valid 
state of obtained data. 
 
4. Conclusions 
The obtained results from modeling of 
styrene monomer unit by neural network and 
ANFIS system revealed that the neural 
network model is more reliable to predict the 
styrene production rate. Furthermore, 
comparison of modeling results with 
industrial data illustrates reliability of the 
neural network for modeling styrene 
production and the best structure of the 
neural network is determined by minimizing 
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total relative error, which contains one 
hidden layer. The optimal value of each 
variable in neural network modeling is 
determined by investigation of the effect of 
variable on the styrene production rate. 
Deactivation of the catalyst was modeled by 
FIS and a correlation was obtained to predict 
the deactivation of this type of catalyst with 
total relative error of 0.044%. As a result, it 
was shown that catalyst deactivation could be 
modeled by fuzzy model.  
 
Nomenclature 
a Catalyst activity 
A, B Constants in Equation (7) 
c1, c2, c3 Constants in Equation (2) 
f(t) Catalyst activity as a function of 

time 
K1 Rate constant of Equation (1) 
PEB Partial pressure of ethylbenzene 

2HP  Partial pressure of Hydrogen 

PSt. Partial pressure of styrene 
R gas constant 
rEB reaction rate of atyrene production 
T Temperature 
T Time 
T0 Temperature when the catalyst 

activity is 1 
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