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Abstract 
The plane Poiseuille flow with unequal wall temperatures of an incompressible fluid 
having temperature dependent viscosity in the presence of transverse magnetic field is 
studied. The coupled differential equations of momentum and energy are solved 
numerically by RKF45 (Runge-Kutta-Fehlberg fourth-fifth) method. Numerical results 
for the dimensionless velocity profiles, the temperature profiles and the heat transfer 
coefficient are presented and discussed graphically for various parameters. The study 
provides quantitative information of interest; in general, it is observed that the 
maximum velocity does not occur in the middle of the channel but moves towards the 
upper wall as the magnetic field increases. The temperature and heat transfer 
coefficient   increases with the increasing value of magnetic field and EPr.  
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1. Introduction 
The magnetohydrodynamic (MHD) flow 
between two parallel walls is a classical 
problem whose solution has many 
applications in magnetohydrodynamic power 
generators, magnetohydrodynamic pumps, 
accelerators, aerodynamic heating, 
electrostatic precipitation, polymer 
technology, petroleum industry, purification 
of oil and fluid droplets and sprays, etc. The 
subject of magnetohydrodynamic is largely 
perceived to have been initiated by Swedish 
electrical engineer Hannes Alfvén [1] in 
1942. If an electrically conducting fluid is 
placed in a constant magnetic field, the 

motion of the fluid induces currents which 
create forces on the fluid. The production of 
these currents has led to the design of, among 
other devices, the magnetohydrodynamic 
generators for electricity production. The 
equations which describe 
magnetohydrodynamic flow are a 
combination of continuity equation and 
Navier-Stokes equations of fluid dynamics 
and Maxwell’s equations of 
electromagnetism. The governing equations 
are differential equations that have to be 
solved either analytically or numerically.  
Nahme [2] considered the plane Couette flow 
for fluid having temperature dependent 
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viscosity, Hausenblas [3] considered the 
plane Poiseuille flow taking a simplified 
form of the viscosity and temperature 
relation keeping both walls at the same 
temperature, the same problem was 
considered by Bansal and Jain [4] taking the 
walls at unequal temperature. Shercliff [5] 
studied the steady motion of an electrically 
conducting fluid in pipes under transverse 
magnetic fields. Drake [6] considered flow in 
a channel due to periodic pressure gradient 
and solved the resulting equation by 
separation of variables method. Singh & Ram 
[7] considered laminar flow of an electrically 
conducting fluid through a channel in the 
presence of a transverse magnetic field under 
the influence of a periodic pressure gradient 
and solved the resulting differential equation 
by the method of  Laplace  transform.  Ram 
et al. [8] have analyzed hall effects on heat 
and mass transfer flow through porous 
media. Shimomura [9] discussed magnetohy-
drodynamics turbulent channel flow under a 
uniform transverse magnetic field. Singh [10] 
considered steady magnetohydrodynamic 
fluid flow between two parallel plates. 
Kazuyuki [11] discussed inertia effects in 
two dimensional magnetohydrodynamic 
channel flow and Al-Hadhrami [12] 
considered flow of fluids through horizontal 
channels of porous materials and obtained 
velocity expressions in terms of the Reynolds 
number. Ganesh [13] studied unsteady 
magnetohydrodynamic Stokes flow of a 
viscous fluid between two parallel porous 
plates. They considered fluid being 
withdrawn through both walls of the channel 
at the same rate. 
In this paper we consider the problem of 
plane Poiseuille flow with unequal wall 

temperatures of an incompressible 
electrically conducting fluid under the 
influence of transverse magnetic field. The 
boundary layer equations governing the 
motion are studied by Bansal and Jain [4], in 
the absence of magnetic field. In the present 
study, the influence of transverse magnetic 
field on plane Poisenille flow with unequal 
wall temperature of an incompressible 
electrically conducting fluid is investigated. 
The governing boundary layer equation of 
momentum and energy are solved 
numerically using Runge-Kutta-Fehlberg 
Fourth-Fifth order method and the effect of 
various parameters is presented and 
discussed. 
 
2. Formulation of the problem 
Consider a steady two-dimensional laminar 
electrically conducting flow with variable 
viscosity between two parallel walls, taking 
x-axis along the central line of the channel 
and y-axis is perpendicular to it. A magnetic 
field of uniform strength Bo is applied in the 
y-direction, which produces the magnetic 
field in the x-direction. We consider the case 
of a short circuit problem in which the 
applied electric field is E = 0, and also 
assume that the induced magnetic field is 
small compared to the external applied 
magnetic field Bo. This implies a small 
magnetic Reynolds number. The boundary 
layer equations governing the motion are 
(Bansal and Jain [4]): 
 

2
0e

d du dpB u .
dy dy dx

μ σ
⎛ ⎞

− =⎜ ⎟
⎝ ⎠

  (1) 

 
22

2 0d T duk
dy dy

μ
⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

 (2) 



Kumar Jhankal, Kumar 

Iranian Journal of Chemical Engineering, Vol.11, No. 1 65 

Along with the boundary conditions are: 
 

10y h : u ,T T= = =   

0 1 00y h : u ,T T (Where T T )= − = = >  (3) 
 

Where 2h is the distance between the walls,  
and the motion is due to the constant pressure 
gradient dp dx along the axis of the channel. 
Let us introduce the following non-
dimensional quantities:  
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Then equations (1) and (2) take the forms: 
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And the corresponding boundary conditions 
reduce to: 
 

1 0 1: u ,Tη = = =  
1 0 0: u ,Tη = − = =  (7) 

 
Where 0 pPr C / kμ=  (Prandtl number), and 

2
1 0m pE u / C (T T )= −  (Eckert number) 

where 
2

02m
h dpu ( )

dxμ
= −  is the maximum 

velocity in the middle of the channel in the 
plane Poiseuille flow with constant fluid 
properties (Schilichting [14]), 0μ  is the 

viscosity of the fluid at temperature 0T  and 
2 2
0 0eM B h /σ μ=  is the non-dimensional 

magnetic parameter.  

3. Numerical solution 
The differential equations (5) and (6) subject 
to boundary condition (7) are solved taking 
an empirical relation between viscosity and 
temperature 1 1/ Tμ α= +  (Hausenblas [3]) 
numerically using Runge-Kutta-Fehlberg 
fourth-fifth order method. To solve these 
equations we adopted symbolic algebra 
software Maple. Maple uses the well known 
Runge-Kutta-Fehlberg Fourth-fifth order 
(RFK45) method to generate the numerical 
solution of a boundary value problem. The 
effect of various parameters on velocity 
profile, temperature profile and the 
coefficient of heat transfer in terms are 
shown in Figs. 1 to 5.  
 

4. Results and discussion 
When the walls of the channel are at different 
temperatures, numerical computations are 
performed for various values of the physical 
parameters involved in the equations viz. the 
magnetic parameter M, α  (where 

1 1 1
2

( )α
μ

= − ) and EPr (where E is the 

Eckert number and Pr is the Prandtl number). 
The calculated results are presented in Figs 
1-5 to understand the effects of parameters 
on the flow and temperature field.  
The impacts of magnetic parameter M on the 
velocity and temperature profiles are very 
significant from a practical point of view. 
Figs. 1 and 2 show the effects of magnetic 
parameter (M) on the velocity profile for the 
different values of α respectively. It is 
observed that in the present case maximum 
velocity does not occur in the middle of the 
channel but moves towards the upper wall as 
the value of M and α  increases. Moreover, 
the rise in magnitude of the velocity is quite 
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significant in the present case showing that 
the volume rate of flow at a section increases 
with increase in M and α . This happens due 
to the Lorentz force arising from the 
interaction of magnetic and electric field 
during the motion of the electrically 
conducting fluid.  
 

 
 

Figure 1. Velocity profile, against the perpendicular 
distance from central line, for different values of 
magnetic parameter M (when α=0.5). 
 
 

 
 

Figure 2. Velocity profile, against the perpendicular 
distance from central line, for different values of 
magnetic parameter M (when α=0.7). 
 
On the other hand, Figs. 3 and 4 show the 
effects of magnetic parameter (M) on the 
temperature profile for the different values of  

 respectively. From the plot it is observed 
that temperature increases with the 
increasing value of M and EPr. This change 

in the temperature distribution leads to an 
important conclusion, that in the present case 
the transfer of heat at the lower wall will be 
more when compared with the constant 
viscosity case. 
The   variation  of  the  temperature  gradient 
–T′(0) which is significant in evaluating the 
rate of heat transfer is presented in Fig. 5, 
against magnetic parameter M for the 
different values. It is observed that –T′(0)  
increases with the increasing value of M and 
EPr. This heat transfer is very important in 
production engineering to improve the 
quality of the final product. 

 

 
 

Figure 3. Temperature profile against the 
perpendicular distance from central line for different 
values of magnetic parameter M (when EPr =0.7). 
 
 

 
 

Figure 4. Temperature profile against the 
perpendicular distance from central line for different 
values of magnetic parameter M (when EPr = 1.0). 
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Figure 5. Coefficient of heat transfer, against 
magnetic parameter for different values of EPr. 
 
5. Conclusions 
A mathematical model has been presented 
for the problem of plane Poiseuille flow with 
unequal wall temperatures of an 
incompressible fluid having temperature 
dependent viscosity in the presence of 
transverse magnetic field. The governing 
boundary layer equations were solved 
numerically using the Runge-Kutta-Fehlberg 
method using Maple software. We infer from 
this study that the maximum velocity does 
not occur in the middle of the channel but 
moves towards the upper wall as the value of 
M and α  increases. The temperature and 

0T ( )′−  increases with the increasing value 
of M and EPr, this heat transfer is very 
important in production engineering to 
improve the quality of the final product.  
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Nomenclature 

0B  Constant applied magnetic field 

1m(Wb )−
 

pC  Specific heat at constant pressure 
1 1( J kg K )− −  

E Eckert number 
h Distance of the walls from the middle of 

the channel (m) 
M Dimensionless magnetic field parameter 
p Pressure (Pa) 
Pr Prandtl number 
T  Temperature (K) 
u Velocity component in x direction (ms-1) 
um Maximum velocity (ms-1) 
v Velocity component in y direction (ms-1) 
x Dimensional horizontal coordinate (m) 
y Dimensional vertical coordinate (m) 
 
Greek symbols 
η  Dimensionless space variable 

eσ  Current density (Cm-2s-1) 

x Thermal conductivity (m2s-1) 
μ  Dynamic viscosity (Pa s) 
 
Superscript  
-  Dimensional quantities 
 
Subscript 
1 Condition at the upper wall 
0 Condition at the lower wall 
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