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Abstract 
The boundary layer convective heat transfer equations with low pressure gradient over 
a flat plate are solved using Homotopy Perturbation Method (HPM), which is one of 
the semi-exact methods. The nonlinear equations of momentum and energy solved 
simultaneously via HPM are in good agreement with results obtained from numerical 
methods. Using this method, a general equation in terms of Pr number and pressure 
gradient (λ) is derived which can be used to investigate velocity and temperature 
profiles in the boundary layer. 
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1. Introduction 
In many industrial applications, the problems 
related to forced convection in large pipes or 
on the surface of the turbomachine-blades 
can be reduced to an external boundary-layer 
problem over a flat plate or a wedge. 
Although turbulent flows are, in general, 
more important, they are usually preceded by 
laminar flow region. Research for solutions 
of laminar steady-state forced convection is 
generally conducted by one of the three 
privileged directions: direct numerical 
computation of the boundary-layer equations, 
differential method based on Blasius 

analysis, and Pohlhausen’s integral method 
[1-3]. 
One of the semi-exact methods is the 
homotopy perturbation method proposed by 
Ji-Huan He [13]. The applications of this 
method in different fields of nonlinear 
equations, integro-differential equations, 
Laplace transform, and fluid mechanics have 
been studied by Cai [5], Cveticanin [6], and 
El-Shahed [7]. The Homotopy perturbation 
method is a novel and effective method, and 
has been successfully applied to solve 
various nonlinear complicated engineering 
problems that cannot be solved by analytical 
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methods [8-11]. Several researches on the 
behavior of non-Newtonian fluids have been 
conducted in different geometries by Ghori et 
al. [8], Ramiar et al. [9], Mahmood et al. 
[10], and Ariel et al. [11]. 
The present work deals with the steady 
laminar forced convection with pressure 
gradient from a flat plate subjected to a 
constant temperature with homotopy 
perturbation method (HPM). The effect of 
pressure gradient is then studied on velocity 
and temperature profile and compared with 
other solutions. 
 
 

2. Basic idea of homotopy perturbation 
method 
To illustrate the basic ideas of the new 
method, we consider the following nonlinear 
differential equation 
 

Ω∈=− r                ,0)()( rfuA  (1) 
 

With boundary conditions 
 

Γ∈=∂∂ r             ,0)/,( nuuB  (2) 
 
Where A is a general differential operator, B 
is a boundary operator, ƒ(r) is a known 
analytic function, Γ is the boundary of the 
domain Ω. 
The operator A can, generally speaking, be 
divided into two parts L and N, where L is 
linear, while N is nonlinear, Eq. (1), 
therefore, can be rewritten as follows 
 

.0)()()( =−+ rfuNuL  (3) 
 

By the homotopy technique [1, 2], we 
construct a homotopy υ(r,Ρ) : Ω×[0,1]→R 
which satisfies 

0H(v,p) (1 p)[L(v) L(v )] p[A(v) f (r)] 0,

          p [0,1],    r

= − − + − =

∈ ∈Ω
 (4a) 

 
Or 
 

0 0H(v,p) L(v) L(u ) pl(u ) p[N(v) f (r)]

0,

= − + + −

=
 (4b) 

 

where p € [0,1] is an embedding parameter, 
u0 is an initial approximation of Eq. (1), 
which satisfies the boundary conditions. 
Obviously, from Eq. (4) we have 
 

,0)()()0,( 0 =−= uLvLvH   (5) 

 
,0)()()1,( =−= rfvAvH   (6) 

 
the changing process of p from zero to unity 
is just that of v(r, p) from u0(r) to u(r). In 
topology, this is called deformation, and 
L(υ)-L(u0), A(υ)-ƒ(r)are called homotopic. 
In this paper, the present author will first use 
the imbedding parameter p as a “small 
parameter”, and assume that the solution of 
Eq. (4) can be written as a power series in p: 
 

...2
2

10 +++= vppvvv   (7) 

 
Setting p=1 results in the approximate 
solution of Eq. (1): 
 

....lim 2101
+++==

→
vvvvu

p
  (8) 

 
The coupling of the perturbation method and 
the homotopy method is called the homotopy 
perturbation method, which has eliminated 
limitations of the traditional perturbation 
methods. On the other hand, the proposed 
technique can take full advantage of the 
traditional perturbation techniques. 
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3. Equations 
Boundary layer flow over a flat plate is 
governed by the continuity and the Navier–
Stokes equations. Under the boundary layer 
assumptions and a constant property 
assumption, the continuity and Navier–
Stokes equations become [12]: 
 

,0=
∂
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y
v
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u   (9) 
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  (10) 
 
Under a boundary layer assumption, the 
energy transport equation is also simplified. 
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2
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∂
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=
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+
∂
∂ α    (11) 

 
From Eqs. (10) and (11), the solutions of the 
energy and momentum equations are coup 
led. However, the buoyancy force may be 
neglected if there is a pressure gradient 
perpendicular to the gravitational force. If the 
pressure gradient is created by an external 
force or shape of motion then it isn’t 
neglected. Thus, in the case of the forced 
convection with a pressure gradient, the 
solution to the momentum equation is 
decoupled from the energy solution. 
However, the solution of the energy equation 
is still linked to the momentum solution. The 
following dimensionless variables are 
introduced in the transformation: 
 

,
vx

Uy ∞=η    (12) 

,)(
∞

∞

−
−

=
TT

TT

W

ηθ   (13) 

 
where θ is nondimensional form of the 
temperature. 
Using Eqs. (9) through (13), the governing 
equations can be reduced to two equations 
where f is a function of the similarity 
variable (η): 
 

.0'
2
Pr''     ,''

2
1''' =+−=+ θθλ ffff   (14) 

 
Where λ and f are related to a pressure 
gradient and the u velocity by 
 

,'                 ,2
∞∞

=−=
U
uf

dx
dP

U
x

ρ
λ   (15) 

 
The reference velocity is the free stream 
velocity of forced convection. The boundary 
conditions are obtained from the similarity 
variables. For the forced convection case: 
 

f (0) 0,   f '(0) 0,   f '( ) 1,   (0) 1,   ( ) 0.= = ∞ = θ = θ ∞ =   (16) 
 
 

4. HPM solution for flow over a flat plate 
According to Eq.4a and Eq.14: 
 

0

0

1(1 p)(f ''' f ''') p(f ''' ff '') ,
2

Pr(1 p)( ''- '') p( '' f ') 0.
2

− − + + = −λ

− θ θ + θ + θ =
 (17) 

We consider ƒ and θ as the following: 
 

2
0 1 2

2
0 1 2 .

f f pf p f ... 

p p ... 

= + + +

θ = θ + θ + θ +
  (18) 

 
Assuming ƒ'''=-λ , θ''=0, and substituting ƒ 
and θ from Eq. (17) into Eq. (18) and some 



Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate  
Via He’s Homotopy Perturbation Method 

36 Iranian Journal of Chemical Engineering, Vol. 9, No. 1 
 

simplification and rearranging based on the 
powers of p-terms, we have: 
 

0,''        ,'''     : 00
0 =−= θλfp   (19) 

0 0 0 0 0f (0) 0,    f '(0) 0,   f '( ) 1,   (0) 1,  ( ) 0.= = ∞ = θ = θ ∞ =  
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3
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3 3 3 3 3f (0) 0,    f '(0) 0,    f '( ) 0,    (0) 0,   ( ) 0.= = ∞ = θ = θ ∞ =  

 
Solving Eqs. (19)-(25) with boundary 
conditions (20)–(26), we have: 
 

23
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Constant coefficient, such as b, c, d, and …, 
can be calculated via two boundary 
conditions: 0)(  1)(' =∞=∞ θandf  

Also, these coefficients are changed via the 
value of ∞η  which changes with the pressure 
gradient or variable Pr number. The work of 
Bird and Cebeci reports values of 5.64 and 8 
for ∞η  for a situation when Pr = 1, m = 0 [2, 

12]. On the other hand, ∞η  in θ  is a function 
of Pr number as well when there is no 
pressure gradient. In this condition, we have 
taken ∞η  to be a function of both m and Pr 
number in his work. 

 
5. Results and discussion 
When there is no pressure gradient, the 
results are obtained employing HPM as well 
as the numerical method suggested by Bird 
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for Pr =1 (Table 1) [12]. Also, the θ (η) 
values obtained from the HPM method have 
very good agreement with the numerical 
method. Therefore, Nusselt number (Nu) can 
be calculated via this temperature profile. 
Fig. 1 shows the variations of f’ (η) in 

different pressure gradient (λ) which can be 
changed between -0.91 to ∞. The minimum 
value of λ that can be studied by this method 
is -0.84, because we solve these problems 
assuming a low pressure gradient. 

 
Table 1. The results of HPM and Numerical methods for f’ (η) and θ (η) 

f' (η) θ(η) 
η 

HPM NM HPM NM 

0 0 0 1 1 

0.2 0.069907 0.066408 0.930093 0.933592 

0.4 0.139764 0.132764 0.860236 0.867236 

0.6 0.209441 0.198937 0.790559 0.801063 

0.8 0.278723 0.264709 0.721277 0.735291 

1 0.347312 0.32978 0.652688 0.67022 

1.2 0.414831 0.393776 0.585169 0.606224 

1.4 0.480832 0.456262 0.519168 0.543738 

1.6 0.544806 0.516757 0.455194 0.483243 

1.8 0.606195 0.574758 0.393805 0.425242 

2 0.664414 0.629766 0.335586 0.370234 

2.2 0.718871 0.68131 0.281129 0.31869 

2.4 0.768993 0.728982 0.231007 0.271018 

2.6 0.814261 0.772455 0.185739 0.227545 

2.8 0.854239 0.81151 0.145761 0.18849 

3 0.888611 0.846044 0.111389 0.143955 

3.2 0.917222 0.876081 0.082778 0.123918 

3.4 0.940107 0.901761 0.059893 0.088239 

3.6 0.957524 0.92333 0.042476 0.06667 

3.8 0.969974 0.941118 0.030026 0.058882 

4 0.978212 0.955518 0.021788 0.031482 

4.2 0.983235 0.966957 0.016765 0.033043 

4.4 0.986244 0.975871 0.013756 0.024129 

4.6 0.988579 0.982684 0.011421 0.017317 

4.8 0.991602 0.98779 0.008398 0.012211 

5 0.996533 0.991542 0.003467 0.008458 
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Figure 1. The results of HPM methods for f’ (η) for different pressure gradient 

 

 
Fig. 2 suggests that for a fixed value of η the 
ratio of hydrodynamic boundary layer 
thickness to thermal boundary layer 
thickness increases by increasing Pr number. 
This effect is more pronounced for higher 
pressure gradients (higher values of λ). 
The effect of pressure gradient variation on 

the thermal boundary layer thickness is 
higher than the Pr number, and the thermal 
boundary layer thickness is decreased via 
increasing pressure gradient. In other words, 
it increases the tendency of the fluid 
temperature to reach the surface temperature. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The results of HPM and NM methods for θ (η) and HPM method for pressure gradient 
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6. Conclusions 
In this paper the heat transfer problem, the 
equations of momentum and energy, were 
solved with the homotopy perturbation 
method over a flat plate. Results are in good 
agreement with those obtained numerically. 
Also, the velocity and temperature profiles 
were obtained as a function of η, pr number, 
and pressure gradient λ. Using HPM method, 
the range of permissible pressure gradient (λ) 
was obtained as -0.083 to 0.111. Finally, an 
attempt has been made to show the effect of 
pressure gradient and Pr number in 
hydrodynamic and heat transfer boundary 
layer. 
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