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Abstract 
Differential Evolution algorithm (DE), one of the evolutionary algorithms, is a new 
optimization technique capable of handling non-differentiable, non-linear and 
multimodal objective functions. DE needs a large run time for optimizing the complex 
objective function. Thus, an attempt to speed up DE is necessary. This paper introduces 
a modification on original DE that enhances the convergence rate by reducing vector 
dispersal at any iteration. Our Adaptive Differential Evolution algorithm (ADE) utilizes 
variable scaling parameter (F) against constant scaling parameter in original DE at 
any iteration. The proposed ADE is applied to optimize three non-linear chemical 
engineering problems. The obtained results have been compared with those results 
obtained using DE. The considered comparison criteria are the vectors dispersal, 
convergence history (run time and number of iterations that led to reach to global 
optimum) and error in any iteration. As compared to DE, ADE is found to perform 
better in locating the global optimal solution, reduces the memory and computational 
efforts by reducing the number of iterations required to reach the global optimal 
solution for all the considered problems. 
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1- Introduction 
Many engineering optimization problems 
have multiple optimal solutions, among them 
one or more may be the absolute optimum 
solutions. These absolute maximum or 
minimum solutions are known as global 
optimal solutions and the rest are known as 
local optimal solutions [1]. The reason for 
the popularity of global optimal solutions is 
that they can determine the absolute optimum 

objective function value. Most of the 
traditional optimization techniques based on 
gradient methods have the possibility of 
getting trapped at local optimum depending 
on the initial guess and extent of non-
linearity [1]. Unfortunately, none of the 
traditional algorithms can guarantee to locate 
the global optimal solution, but population 
based search techniques have been found to 
have a better global perspective than the 
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traditional methods [2]. In the recent past 
year, non-traditional search and optimization 
techniques based on natural phenomenon, 
such as genetic algorithms [3], evolution 
strategies [4], simulated annealing [5], bird 
migration [6] and Differential Evolution [7], 
have been applied to solve the problems. 
Some of advantages of Differential Evolution 
are as follows: 
1- They can be applied to the non-continuous 

and/or non-differentiable objective 
functions. 

2- They are not sensitive to the initial point. 
3- They usually do not get trapped into local 

optimal solutions. 
 

2- Differential evolution 
DE, invented as a result of Price and Storn's 
study in 1995, is a simple powerful 
population based technique for finding the 
global optimal solution of non-differentiable, 
nonlinear and multi-modal optimization 
problems [7]. This technique combines 
simple arithmetic operators with the classical 
events of mutation, crossover and selection 
to evolve from an accidentally generated 
initial population (consisting of NP member 
vectors NPix Gi ,,...2,1(, =  for each 

generation )  to the final individual solution. 
Mutation and crossover are used to generate 
new vectors (trial vectors), and selection then 
determines which of the vectors will go on 
into the next generation. Specific design of 
generating trial parameter vectors as 
explained earlier is a key idea behind the DE.  
According to Storn and Price's work, DE’s 
basic strategy can be described as follows: 
 

3- Mutation 
A mutant vector is produced for each target 

vector xi,G, (i =1, 2, ..., NP), according to Eq. 
(1): 
 

( )GrGrGrGi xxFxv ,3,2,11, * −+=+  
1r  ≠ 2r  ≠ 3r  ≠ I (1) 

 
With accidentally selected integer indexes r1, 
r2, r3 that belong to {1, 2, ..., NP}. Note that 
indexes must be dissimilar from each other 
and from the running index. F has a value 
between [0, 2] which controls the 
strengthening of the differential variation 
(xr2,G−xr3,G). 
 
4- Crossover 
In order to enhance the diversity of the 
perturbed parameter vectors, crossover is 
added. The target vector is mixed with the 
mutated vector, using the Eq. (2), to yield the 
trial vector. 
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Where randb(j) is the jth evaluation of an 
identical random number producer between 
[0, 1]. CR is the crossover constant between 
[0, 1] which has to be entered by the user. 
rnbr(i) is a randomly selected index from 1, 
2, . . . , D which guarantees that the trial 
vector gets at least one parameter from the 
target vector. Otherwise, no new parent 
vector would be formed and the population 
would not change. 
 
5- Selection 
To make the decision whether or not the trial 
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vector should become a member of the next 
generation, the trial vector is compared to the 
target vector by using the specified criterion. 
Suppose that the objective function should be 
minimized. According to the Eq. (3): 
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If the trial vector yields a better value of the 
objective function than the target vector, then 
the target vector is replaced with the trial 
vector. Otherwise, the old value of target 
vector is retained. As a result, all the 
individuals of the next generation are as good 
as or better than their counterparts in the 
present generation. In should be mentioned 
that the trial vector is only compared to one 
individual vector, not to all the individual 
vectors in the present population. The 
schematic figure of the original DE algorithm 
is shown in Fig. 1. 
 
 

 

Figure 1. Schematic diagram of original DE 

6- Constraint handling 
Many engineering optimization problems 
have a constraint. The complexity of utilizing 
Evolutionary Algorithms in the constrained 
optimization problem is that the evolutionary 
operators utilized to manipulate the 
individuals of the population often generate 
solutions which are unfeasible. The 
constraint handling in the present study is 
performed based on the penalty function 
method. This technique transforms the 
constrained problem into an unconstrained 
problem by penalizing unfeasible solutions 
according to Eqs. (4, 5). 
 
Minimize f (X)
subject tog(X) Minimize: P (f ,g,h, r)

h(X)
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7- Improvement on differential evolution 
The principle of ADE is the same as the 
original DE. The major difference between 
ADE and DE is that our algorithm uses 
variable scaling parameter against constant 
scaling parameter in the original DE at any 
iteration. F controls the amplification of the 
differential variation ( )GrGr XX ,3,2 −  in the 

mutation step based on Eq. (1). It can be said 
that variable F can reduce solution vectors 
dispersal in any iteration and results in faster 
convergence. 
Some functions such as logarithmic, 
exponential, inverse and square are examined 
for changing F with iteration. Numerical 
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results suggest that square function has the 
best performance to reduce vector dispersal 
in any iteration, and therefore can result in 
faster convergence. Scaling parameter is 
updated by the square function according to 
Eq. (6), as and when an iteration progresses. 
B is a parameter that reduces with the 
progress of the iteration and results in 
reducing the value of F. That parameter is 
defined in Eq. (7). 
 

( )21 1 iii BFF −×=+  (6) 
 

i
i

F
B

Maximum number of iterations
=  (7) 

 

It has been shown that F0=0.8 is the best 
value of scaling parameter. Thus, in the 
present study, F0= 0.8 is used as an initial 
value. 
 

8- Examination of vector dispersal of ADE 
and DE 
The investigation of vector dispersal of the 
proposed ADE and the original DE has been 
carried out by finding an optimal solution of 
two dimensions optimization problem. Based 
on Eq. (8), the objective function should be 
minimized subject to equal and non equal 
constraints that are defined by Eq. (9). 
 

2 2
1 2Minimize: f (X) (x 1) x= − +  (8) 

 
2 2
1 2 1 2Subject to: h(X) x x x x 0= + + + =  

2
1 2g(X) x x 0=− + ≥  (9) 

 

In the Fig. 2(A) and 2(B), the vector 
dispersal of ADE and DE with 30 members 
has been shown in the 32nd iteration. The Fig. 
2(A) and 2(B) clearly show that the vector 
dispersal of ADE is less than that obtained by 

DE. As can be seen from Fig. 2(C) and 2(D), 
the proposed ADE located the global optimal 
solution after 41 iterations, while the original 
DE reached the global optimal solution after 
60 iterations. In Fig. 2(C) and 2(D), all of the 
members of ADE and DE coincide with the 
optimal solution located in X = [0.2056, -
0.4534]. The actual global optimal solution is 
shown by asterisk in Fig. (2). 
The variable scaling parameter that is utilized 
in the ADE algorithm, results in reducing 
vector dispersal in any iteration and finding a 
global optimal solution in a lower number of 
iterations. In fact, the lower vector dispersal 
led to a reduction of the required time to 
reach a global optimal solution. These issues 
are investigated in more detail through three 
non linear chemical engineering optimization 
problems. 
 

9- Optimization of non-linear chemical 
processes 
The proposed ADE is applied to optimize 
three non-linear chemical process problems. 
The performance of ADE and DE is 
compared. The comparison is made by 
considering the convergence history (run 
time and the number of runs converged to 
global optimal solution) and errors in any 
iteration. 
 
9.1- Minimizing company's total costs 
A company has two alkylate units, A1 and 
A2, from these, a product is sent to 
customers, C1, C2, and C3. The transportation 
expenses are given in Table (1). 
The maximum plant production rates and 
minimum customer demand rates are fixed 
and shown in Table (2). 
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Figure 2. Schematic of vector dispersal in 32nd (A), (B) and final iteration (C), (D) of ADE and original DE. 
 

Table 1. The transportation costs between plants and customers 
Refinery A1 A1 A1 A2 A2 A2 

Customer C1 C2 C3 C1 C2 C3 

Cost ($/ton) 25 60 75 20 50 85 

 
 

Table 2. The maximum refinery production rates and minimum customer demand rates 
Customer or production A1 A2 C1 C2 C3 

Rate (ton/day) 1.6 0.8 0.9 0.7 0.3 
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For production levels less than 0.5(ton/day), 
the cost of production for A1 is 
30(dollars/ton), while it is 40(dollars/ton) for 
production levels greater than 0.5 (ton/day), 
A2's production cost is uniform at 
35(dollars/ton). The objective is finding the 
optimum distribution policy to minimize the 
company's total costs [1]. The optimal and 
the optimal variable values are: f =151.4934, 
X = [0.7999, 0.0000, 0.2999, 0.1001, 0.7000, 
0.0000]. 
Errors and required CPU time for reaching 
an optimal solution at any iteration, by using 
DE and ADE algorithm are shown in Fig. 
3(a) and 3(b), respectively. It should be 
mentioned that, in Fig 3(a), error is defined 
as an absolute (f-fact.) where f and fact are 
optimal solution in any iteration (get via 
optimization algorithm) and actual optimal 
solution (get from literature), respectively. It 
can be seen from Fig. 3(a), that the errors 
that have been obtained via ADE were 
smaller than those that have been gotten from 
DE at any iteration. Error has reached zero 
by ADE after 100 iterations, while the error 
of the DE algorithm at the 180th iteration is 

equal to zero. It can be seen from Fig. 3(b) 
that ADE also reduces the required CPU and 
run time to reach a global optimal solution. 
The differences between the computational 
efforts of two algorithms have increased as 
the iteration progresses. These statuses have 
been accessed for all the considered 
problems. The values of the objective 
function that have been calculated by ADE 
and DE are shown in Table (3). 
 
9.2- Optimal operation of alkylation unit 
Alkylation is a common unit in the petroleum 
industry. As shown in Fig. 4, a butane feed, a 
pure isobutane recycle and a 100% isobutane 
make-up stream are fed into a reactor, 
together with an acid catalyst. The reactor 
product is then fed into a fractionator where 
the isobutane and the alkylate product are 
separated. The spent acid is also removed 
from the bottom of the reactor. The variables 
are defined as shown in Table (4) along with 
the upper and lower bounds on each variable. 
The bounds represent physical, economic and 
performance constraints [8]. 
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Figure 3. Error (a) and Run Time (b) vs. Iteration for DE and Proposed ADE 
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Table 3. Objective function value of ADE and DE 

Iteration Objective function  
value of DE 

Objective function value 
of ADE  

10 168.856778 160.502563 
30 154.000476 154.081014 
50 152.371523 151.673524 
70 151.917102 151.535829 
90 151.547618 151.493786 

100 151.511981 151.493356 
130 151.496358 151.493356 
180 151.493357 151.493356 
180 151.493356 151.493356 

 
 

 

Figure 4. alkylation process flow sheet 
 
 

Table 4. variables and their bounds 
Symbol Variable Lower Bound Upper Bound 
x1 Olefin feed rate (barrels/day) 1500 2000 

x2 Acid addition rate (thousands of barrels/day) 1 120 

x3 Alkylate yield (barrels/day) 3000 3500 

x4 Acid strength (wt. %) 85 93 

x5 Motor octane no 90 95 

x6 External isobutane-to-olefin ratio 3 12 

x7 F-4 performance no 145 162 
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In the present study, the problem formulation 
is the same as that of Maranas and Floudas 
(1997) and Adjiman et al. (1998). The 

objective function and related constraints are 
shown through Eq. (10) and (11), 
respectively: 

 

5323611 063.0100565.4035.0715.1 xxxxxxxprofitMax −+++=  (10) 

toSubject

 01175625.088392857.00059553571.0 11631
2

6 ≤−−+ xxxxxx  
00066033.01303533.01088.1 3

2
61611 ≤−−+ xxxxxx  

01000020592.191596669.5639878.17266173269.6 645
2

6 ≤−−−+ xxxx  
085075.5603762.032175.008702.1 5

2
646 ≤+−−+ xxxx  

0125634.253121.2462006198.0 3422347 ≤−−+ xxxxxxxx  

0489510500018996.161 74324243 ≤−−+ xxxxxxxx  
0333333.4433.0 57 ≤+− xx  

00.100759.0022556.0 75 ≤−− xx  
00.10005.000061.0 13 ≤−− xx  
0819672.0819672.0 31 ≤+− xx  

025024500 43422 ≤−− xxxxx  
01000002244898.14082.1020 24324 ≤−+ xxxxx  

0100000625.725.625.6 3161 ≤−−+ xxxx  
00.122.1 1163 ≤+−− xxxx  

 
 
(11) 

 
 

The maximum profit as reported in [8] is, 
177277 (dollars/day) and the optimal variable 
values are: 
 

x1 = 1698.18, x2 = 53.66, x3 = 30313, x4 = 
90.11, x5 = 95, x6 = 10.50, x7 = 153.33. 
 
In this problem the error is defined the same 
as the previous one. The obtained 
information has been plotted in Fig. 5(a) and 
5(b). In the current problem, ADE has shown 
a smaller error than DE in any iteration too. 
ADE and DE algorithms have reached real 
optimal solution (very small value for error) 
after 125 and 230 iterations, respectively. In 
other words, fewer iterations are required for 
reaching a global optimal solution using 

ADE compared to the original DE. Required 
CPU time for reaching an optimal solution in 
any iteration is shown in Fig. 5(b). The 
required computational times of the original 
DE are higher than those ADE needed, and 
the differences become larger as the 
iterations progress. 
 
9.3- Heat exchanger network design  
This problem addresses the design of a heat 
exchanger network as shown in Fig. 6. A 
cold stream must be heated from 100°F 
(37.78°C) to 500°F (260°C) using three hot 
streams with different inlet temperatures. The 
goal is to minimize the overall heat 
exchanger area [9]. 
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Figure 5. Error (a) and Run Time (b) vs. Iteration for DE and Proposed ADE 
 

 

Figure 6. Heat exchanger network design 
 
The problem formulation has been taken 
from Floudas and Pardalos (1990). Objective 

function and related constraints are shown 
through Eq. (12) and (13): 

 

321 xxxfMinimize ++=  (12) 

tosubject  

0333.83333332.833)400(100 4411 ≤++−− xxxx  

012501250)400( 5445242 ≤+−+−− xxxxxxx  

012500002500)100( 55353 ≤+−+− xxxxx  

1000,10,10000,1000,10000100 54321 ≤≤≤≤≤≤ xxxxx  

 
(13) 

 
 
The global optimal as reported in [9] is: (x1, 
x2, x3, x4, x5, x6, x7, x8; f) = (579.19, 
1360.13, 5109.92, 182.01, 295.6, 217.9, 
286.4, 395.6, 7049.25). 
As were seen in the previous problems, ADE 
shows a smaller error and the required 

computational time is less than the original 
DE to reach an optimal solution in any 
iteration. This can result in a faster 
convergence rate of the proposed ADE. In 
the present problem the same results were 
obtained compared to previous problems. As 
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shown in Fig. 7(a), at the 1100th and the 
1900th iterations, the value of error reached 
zero (real optimal solution), by ADE and DE, 
respectively. It can be seen from Fig. 7(b), 

that ADE also requires a smaller memory and 
computational efforts to reach a global 
optimal solution. 
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Figure 7. Error (a) and Run Time (b) vs. Iteration for DE and ADE 

 
10- Conclusions 
Utilizing variable scaling parameter in the 
mutation step is the main difference between 
the proposed ADE and the original DE. 
Variable scaling parameter results in 
reducing vector dispersal, reducing error and 
run time at any iteration. The proposed ADE 
and original DE have been applied to 
optimize three non-linear chemical 
engineering problems. The results obtained 
from ADE have been compared with those 
using DE, by considering the convergence 
history and error in any iteration. As 
compared to DE, ADE is found to perform 
better in locating the global optimal solution 
for all the considered problems. ADE also 
reduces the memory and computational 

efforts by reducing the number of iterations 
to reach a global optimal solution. 
 

11- Nomenclature 
ADE Adaptive Differential Evolution 

CR crossover constant 

DE Differential Evolution 

f objective function 

F scaling parameter 

NP population size 
Run-time time taken by CPU per execution 
uji,G Trial vector 

vi, G 
noisy random vector, ith 
dimension in (G+1)th generation 

xi,G Target vector 

X Optimal solution vector 
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