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Abstract

Accurate prediction of the minimum miscibility pressure (MMP) in a gas injection
process is crucial to optimizing the management of gas injection projects. Because the
experimental determination of MMP is very expensive and time-consuming, searching
for a fast and robust mathematical determination of CO,-0il MMP is usually
requested. This paper presents a new model based on a hybrid neural-genetic
algorithm for predicting pure and impure CO»-0il MMP. The CO,-o0il MMP of a
reservoir fluid was correlated with the reservoir temperature, the composition of the
oil, and that of the solution gas. The developed model is able to reflect the impacts on
the CO,—0il MMP of the molecular weight of the Cs. fraction, reservoir temperature,
and solution gas in the oil. The validity of this new model was successfully approved by
comparing the model results to the calculated results for the common pure and impure
CO,-0il MMP correlations. The new model yielded the accurate prediction of the
experimental slim-tube CO,-o0il MMP with the lowest mean absolute percentage error
(MAPE), the standard deviation of error (SD), the root mean square error (RMSE), and
the highest correlation coefficient among tested impure and pure CO,-o0il MMP
correlations. The results demonstrate that the hybrid neural-genetic model can be
applied successfully and provide high accuracy and reliability for MMP forecasting.

Keywords: Forecasting, Minimum miscibility pressure, Neural-genetic model, Gas
injection

Introduction

Gas injection above the minimum miscibility
pressure (MMP) is a widely practiced means
for improving oil recovery in many
reservoirs. The minimum miscibility pressure
is the lowest pressure for which a gas can
develop miscibility through a multicontact
process with a given reservoir oil at reservoir
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temperature. Reservoir pressures below the
MMP result in immiscible displacements
and, consequently, lower oil recoveries. At or
above the MMP, miscibility can develop
through a vaporizing process, a condensing
process, or sometimes a combination of the
two processes [1]. In the vaporizing gas
process, intermediate molecular weight
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hydrocarbons from crude oil are transferred
to the leading edge of the gas front, enabling
it to become miscible with the reservoir
crude. In the condensing gas process, the
injected gas is enriched with light
hydrocarbons, usually LPGs. The reservoir
oil left behind the gas front is enriched by the
net transfer of the light hydrocarbons from
the gas phase into the oil. Enrichment of the
reservoir oil proceeds until it becomes
miscible with the injected rich gas.
Miscibility can aso develop through a
combination of the vaporizing and the
condensing processes. With this combination
of condensation and vaporization, miscibility
may never completely develop, yet the
process can result in low residua oil
saturations [2].

From an experimental point of view, the
MMP is routinely determined by slim tube
displacements. In those experiments a long
(say 10 m or longer), small diameter (say 0.5
cm) tube packed with sand or glass beads is
filled with oil that is then displaced by
injection gas at a fixed temperature and
pressure. Typically, recovery increases
rapidly with increasing pressure and then
levels off. The MMP is usually taken to be
the intersection of the lines drawn through
the recovery points in the steeply climbing
and level regions as long as the recovery in
the level region is above some arbitrary
cutoff (often 90%). To accurately determine
the MMP, it is generally necessary to
perform six displacements at six different
pressures. The time required to perform a
displacement is about 8 h (a working day).
This means one week of experimental work
IS necessary to measure one MMP. The cost
of such a work depends on the salary of the
engineer who makes the experiment, but may
be evaluated at 10,000 US dollars [3]. It is
thus clear that, for petroleum companies, the
slim tube test is a very expensive experiment.
Among gas injection processes, CO, is
preferred to hydrocarbon gases because of its
lower cost and high displacement efficiency
[4]. To facilitate screening procedures and to
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gain insight into the miscible displacement
process, many correlations relating the MMP
to the physical properties of the oil and
displacing gas have been proposed [5-11].
However, the main concern with statistical
techniqgues such as multiple linear and
nonlinear regression techniques is the dif-
ficulties in satisfying many rigid assumptions
that are essential for justifying their
applications, such as those of sample size,
linearity, and continuity [12]. Therefore,
nonlinear modeling techniques such as
artificial neural networks are necessary for
building an accurate and reliable predictive
model. Huang et a., [13] developed an
artificial neural network for predicting MMP.
The MMP was correlated with the reservoir
temperature, molecular weight of the Cs.
fraction, volatile oil fraction (CH4+Ny) to
intermediate ail fraction (C, to Cq4, H>S, and
CO,), and composition of the CO, stream.
Also, the impure CO, MMP factor was
predicted by correlating the concentration of
contaminants (N2, C;, H2S and SOy) in the
CO; stream and their critical temperatures.

When artificial neural networks are used for
prediction and forecasting, the underlying
philosophy is similar to that used in
traditional statistical approaches. Therefore,
ANNs and statistical models are closely
related. Consequently, the principles that are
considered good practice in the development
of statistical models need to be given careful
consideration. The major areas that should be
addressed include data pre-processing,
choice of adequate model inputs, choice of
an appropriate network geometry, parameter
estimation, and model validation. At each
stage, a number of alternatives are available
to modelers. This offers great flexibility, but
can aso create difficulties as there are no
clear guidelines to indicate under what
circumstances particular approaches should
be adopted. Therefore, the performance is
very much dependent on the network
architecture. Hence, an optimum or near
optimum network structure is of utmost
importance. This can be done by means of
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genetic agorithms (GA) as a powerful
optimization tool.
The design of neura networks using GA
principles can be very helpful in terms of two
main issues [14]:

* It automates the design of the network
which will otherwise have to be done by
hand using trial and error.

» The process of design can be analogous
to a biological process in which the
neural network blueprints encoded in
chromosomes devel op through an evolu-
tionary process.

In this paper, the advantage of a neura-
genetic computing technique in modeling the
prediction of MMP in a gas injection process
is examined. The prediction begins by
generating ANNS that define the relationship
between the input/output data. The optimiza-
tion of ANNS set is then done with genetic
algorithms as a powerful optimization tool.
Finaly, the performance of the neural-
genetic model is compared to the
conventional methods by means of some
statistical indices.

Threshold neuron

Uy

U

Un

Input layer

Hidden layer

Theoretical background

Neural networks

Neural networks are powerful tools for the
approximation of unknown nonlinear func-
tions and have gained wide applications in a
variety of fields [15]. A typical three layer
feed-forward neural network (FNN) is briefly
depicted in Fig. 1. The neural network is able
to learn the underlying relationship from a
collection of training samples. The most
famous training algorithm is error back
propagation agorithm (BP). Consider a
neural network with M layers, where the first
layer is named input layer, the last layer
named output layer, and the others named
hidden layers. The Ith layer has n; neurons
(numbered from #1 to #n;) and a threshold
neuron (numbered #0). Given S training
samples (Us,T¢), s = 1,2,. . . .S, where
Us=[u;,..u; Jand T=[t7,..t; 1. For acertain
input U=[u,,..u, Jof the network, the input

x; and output y; of ith neuron of Ith layer are
asfollows:

Output layer

Figure 1. Brief structure of multi-layer feed-forward ANN [16].

Input layer:
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(1)

Lnl=12,..,M -1

=g(x})=1/[1+exp(-x})]
2

where w; "' isthe weight from the ith neuron

of the (I-1)th layer to the jth neuron of the Ith
layer, and g(-) isactive function.

Output layer:

i=0 3
yM =g(xM)=1/[1+exp(—x} )]

Training a neural network is to minimize the
error function by determining the weights
w; . Once the ANN has been trained, it can

be used to predict the unknown output of
some input. The widely used training error
function is asfollows:

s 15 Ny
E-E =52 3 (F-yM )

s=1 s=1i=1

where y;™ isthe output of the ith neuron of

the Mth layer when inputting the sth sample.
The classic BP updates the weight by
following the summarized rule.

‘1'(k+1) ‘“(k) AOE [ ow, '1' 4
where A € (0,1) isthe learning rate.
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where
si'()=0yi' ~519x' ()] 1=M
g'[x3' (k)] = 255'+1(k)w"+1(k) I=M-1,..,2

(6)

and g'(-) isthe derivative of active function.
To further improve the performance of the

BP algorithm, the following BPM algorithm
(BP with momentum) [16] is often used.

wH (k+1)=w(k)-2.0E / ow{ M (k)

+AIwi i (k) -wiH (k-1)]

(7)

where S isthe momentum factor.

Genetic algorithms

Based on the idea of ‘‘survival of the fittest’’
and ‘‘natural selection’’, GA is a class of
parallel iterative algorithm with a certain
learning ability that repeats evauation,
selection, crossover and mutation after
initialization until the stopping condition is
satisfied [17]. GA is naturaly parallel and
exhibits implicit parallelism, which does not
evaluate and improve a single solution, but
analyses and modifies a set of solutions
simultaneously. Even if the selection
operator can select some ‘‘good’’ solutions
as seeds with random initialization, the
crossover operator can generate new
solutions, hope-fully retaining good features
from parents, and the mutation operator can
enhance diversity and provide a chance to
escape from the local optima. Due to the
efficient and robust performance, GA have
been deeply studied and successfully applied
in many fields [4,7,18]. However, for those
problems without explicitly unknown forms
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of objective functions, the approximate
fitness value should be provided efficiently
for the GA to guide the evolutionary search.

Genetic evolve neural networks

The back propagation neural network, which
is one of the main algorithms for learning
neural networks in petroleum engineering
applications, does have some drawbacks.
Some of these drawbacks are the slowness of
learning speed, possibility of falling into
local minimum and the necessity of adjusting
a learning constant in every application. To
address some of these drawbacks, the genetic
based design of neural networks has been
proposed [19]. A major issue in the genetic
based design of a neural network is that of
representation (encoding). The encoding
should be capable of capturing al of the
important aspects of the problem. Therefore
in GA, the representation scheme should be
capable of alowing new, meaningful and
valid network architecture to be produced by
the genetic operators, (like crossover or
mutation). GA are applied to the neural
network in two different ways:

* They either employ a fixed network
structure with a connection under
evolutionary control.

» They are used in designing the structure
of the network.

Therefore the evolution that has been
introduced to neural networks can be divided
roughly into different levels: (a) connection
weights; (b) architecture; (c) learning rules.

In the application of GA to the training of
neural networks, the parameters of the
problem ae encoded as a set of
chromosomes called the population, and
candidate solutions are assigned fitness
values based on the constraints of the
problem. Based on each individual’s fitness,
a selection mechanism selects a mate with a
high fitness value for genetic manipulation.
The manipulation process uses standard
crossover and mutation genetic operators to
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produce a new Population of individuals
(offspring) [17]:

*» The selection is based on fitness, that is,
the fitter an individual, the greater the
chance of getting selected for repro-
duction.

» Crossover operator takes two chro-
mosomes and swaps part of ther
genetic information to produce a new
chromo-some.

* Mutation is implemented by
occasionally altering a random bit in a
string before the offspring are inserted
into the new population.

Fig. 2 shows the working principles of GA.
In the neural network application of GA, one
can distinguish between direct encoding and
indirect encoding. When all the details can be
specified by chromosomes, this is called a
direct encoding; if other details cannot, this
is called indirect encoding. The indirect
encoding method is biologicaly more
plausible than the direct encoding method.
This is because it is impossible for genetic
information encoded in chromosomes to
specify the whole nervous system. Fig. 3
shows an example of encoding information
of neural networks for GA application. Fig.
3(a) shows an example neural network to be
trained geneticaly, and Fig. 3(b) is
chromosome representation of a neural
network in Fig. 3(a). A neura network
consists of 12 weights. Therefore 12 weights
can be encoded and the length of the string is
based on the number of bits per weight. The
number of bits to be used to represent each
weight can have a significant effect. If too
few bits are used the effect of weight
quantization will be significant, resulting in
poor convergence. On the other hand, alarge
number of bits per weight will again lead to
dow convergence because of a long
chromosome string.
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Figure 3. (a) Example of an artificial neural network; (b) genetic representation of (a).

Developing pure and impure CO,-Oil
MMP Model

For CO, MMP modeling, reservoir tem-
perature Tg, molecular weight of Cs. fraction,
ratio of volatile (Xvo) to intermediate (Xino)
oil fraction, and the pseudocritical tempera-
ture of the injected gas are selected as input
variables. In the case of pure CO,,
pseudocritical temperature will be pure CO;
critical temperature. The data used for
developing the neura-genetic model are
from Jacobson [20], Graue and Zana [21],
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Gardner et a. [22], Frimodig et al. [23],
Cardenas et a. [24], Alston et a. [9],
Metcalfe [25] and, Dong et a. [6]. The
experimental data reported in the literature
that was used to develop and validate the
models are presented in Table 1. Out of the
total 55 input/output data sets, 44 data pairs
were used for training the model. The model
was trained for 50 epochs. To validate the
model, 11 data sets were used for the testing
purpose. Fig. 4 shows the proposed flowchart
of a neural-genetic based algorithm for pure
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and impure CO, MMP modeling. Back
propagation neural network was assumed for
al the runs. The searching mechanism of the
implemented hybrid strategy can be briefly
described as follows. Firstly, ANNs are
constructed with a BP training agorithm
based on a collection of training samples. In
order to optimize the network structure, the
parameters of the network, such as the
number of neurons in the hidden layers,
momentum and learning coefficients are
treated as variables. Here, the number of
neurons in the two hidden layers are coded as
binary variables and are allowed to take only
integer values. The other two parameters,
learning and momentum coefficients, are
coded as real variables and are alowed to
take real values. Thefitnessis evaluated after
training the network for specific iterations,
which is kept as the mean square error
(MSE) of the network based on the

comparison between measured and predicted
MMP values. A Roulette Whed Parent
Selection is carried out to select two parents
(chromo-somes) from the population to
produce two children (new chromosomes) by
the reproduction operators. This method is
selected because it is faster than other
methods (e.g., tournament parent selection).
A one-point crossover with a probability
(P(c)) equal to 100% has been used. After
crossover and production of two children
chromosomes, one gene is selected from each
child chromosome to mutate its value
(mutation probability (P(m)) is equal to 1%)
by adding a random value to its old value as
follows:

New value = £ xOld value + y x Randomvalue

0<p<land 0<y<1

Initialize the network (number of
neurons in the hidden layers, A and )

v

Present the training patterns

'

Train the network up to a specified number of

iteration by BPNN and evaluate fitness (MSE)

Satisfying
stopping
criterion?

Mutation

i

Crossover

+

Reproduction

Train the network by BP up to desired MSE
or up to maximum number of iterations

Y

Display the performance by
presenting testing parameters

Figure 4. Flowchart of the hybrid neural-genetic algorithm.
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Table 1. Experimental CO,-o0il MMP data from different literature sources.

Composition of CO, stream Tr Oil composition Experimental MMP
Ref. CO, % C,% N, % C-Cs % H.S % °C MWs.+ Vol./Int. (Mpas)
9 100 0 0 0 0 54.44 185.83 0.6 10.34
9 100 0 0 0 0 61.11 185.83 0.14 10.34
100 0 0 0 0 57.78 202.61 042 1171
12 90.5 0 0 9.5 0 7111 221 5.9 18.61
12 100 0 0 0 0 54.44 185.83 0.14 9.48
12 100 0 0 0 0 7111 221 5.9 2343
12 100 0 0 0 0 37.78 235.56 2.58 16.54
12 100 0 0 0 0 112.22 2135 1.16 2413
12 100 0 0 0 0 54.44 185.83 0.67 10.34
12 925 75 0 0 0 54.44 185.83 0.14 10.34
12 100 0 0 0 0 110 180.6 0.91 20.19
12 90 10 0 0 0 54.44 185.83 0.73 13.09
12 95 0 0 5 0 7111 221 59 18.61
12 86.4 10.7 0 29 0 73.33 227 7.71 23.09
22 875 0 6.3 6.2 0 76.11 227 7.71 2315
22 79.2 0 8.8 12 0 76.11 227 7.71 23.15
22 100 0 0 0 0 67.78 203.81 1.35 16.88
23 100 0 0 0 0 42.78 196.1 0.82 10.61
24 90 10 0 0 0 54.44 171.2 0.93 124
24 100 0 0 0 0 54.44 171.2 0.93 10.98
25 80 0 0 20 0 65.56 187.27 151 10.49
25 45 10 0 0 45 40.56 187.8 0.74 8.82
26 50 0 0 0 50 57.22 187.8 0.74 8.96
26 90 0 0 10 0 65.56 187.27 151 11.03
26 100 0 0 0 0 40.56 187.8 0.74 8.27
27 80 0 0 20 0 65.56 187.27 151 12.87
27 60 20 0 0 20 57.22 187.8 0.74 17.23
28 100 0 0 0 0 65.56 187.27 151 13.44
28 90 10 0 0 0 40.56 187.8 0.74 11.07
28 80 20 0 0 0 40.56 187.8 0.74 14.86
28 100 0 0 0 0 48.89 187.27 151 11.03
28 80 0 0 20 0 48.89 187.27 151 9.65
28 50 0 0 0 50 40.56 187.8 0.74 6.53
28 80 0 0 20 0 48.89 187.27 151 7.92
28 80 20 0 0 0 57.22 187.8 0.74 18.61
28 67.5 10 0 0 225 57.22 187.8 0.74 124
28 60 20 0 0 20 40.56 187.8 0.74 14.06
28 90 0 0 10 0 48.89 187.27 151 7.89
28 90 10 0 0 0 57.22 187.8 0.74 15.33
28 90 0 0 10 0 65.56 187.27 151 8.96
28 40 20 0 0 40 57.22 187.8 0.74 124
28 45 10 0 0 45 57.22 187.8 0.74 10.37
28 90 0 0 10 0 48.89 187.27 151 9.3
28 67.5 10 0 0 225 40.56 187.8 0.74 10.25
28 100 0 0 0 0 57.22 187.8 0.74 1171
28 100 0 0 0 0 32.22 187.8 0.74 6.89
28 75 0 0 0 25 57.22 187.8 0.74 10.3
28 90 0 0 10 0 65.56 187.27 151 13.02
28 90 0 0 10 0 48.89 187.27 151 9.99
29 40 20 0 0 40 40.56 187.8 0.74 12.09
29 75 0 0 0 25 40.56 187.8 0.74 7.53
29 92.25 0 0 7.75 0 112.22 2135 1.16 19.67
30 100 0 0 0 0 7111 207.9 0.32 1551
31 95 4.9 0.1 0 0 7111 207.9 0.32 16.81
31 100 0 0 0 0 42.78 204.1 0.82 10.34
Note.

Vol.: Volatile ail fraction;

Iranian Journal of Chemical Engineering, Vol. 3, No. 4

Int.: Intermediate oil fraction
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where f =0.95andy =0.35 is selected in

this work. These values are selected based on
GA peformance, wheref is increased,

andy is decreased to detect any

improvement in the fitness value. Otherwise,
the process is reversed. Furthermore, this
technique enables the use of a part of the last
reached solution. After producing the two
children chromo-somes, they are evaluated
prior to being used to obtain their fithess
values. The best two chromosomes (i.e., the
most fit two chromosomes) from the two
parents and the two children are then inserted
back into the population to improve the
group of solutions. Until the stopping
criterion of the GA is satisfied, the strategy
will output the best solution resulting from
the GA and its performance determined by
detailed evalua-tion

Table 2. List of the performance measures.

based on the comparison between measured
and predicted MMP values. The optimization
is carried out with a population of 30 with
the stopping criteria as the maximum number
of generations kept at 50. The final network
is then trained by BP up to the desired level
of MSE and the performance is checked by
presenting the unseen testing patterns.

Model performance

The performances of the models developed
in this study were assessed using various
standard statistical performance evaluation
criteria. The statistical measures considered
were Pearson’s correlation coefficient (R),
standard deviation (SD), root mean square
error (RMSE), and mean absolute percentage
error (MAPE) (Table 2).

Statistical parameter

Expression

Pearson’ s correlation coefficient (R)

Standard deviation (SD)

Root mean square error (RM SE)

Mean absolute percentage error (MAPE)

n
> (MMPY — MMP ™ )(MMP? — MMP ")

i=1

\/zn:(MMPiM -MMP" )\/Z";(MMRP -MMP*)

2
n [|MMP" — MMP?
3 T X100
= MMP,
+
n-1

F(MMHM ~MMP?)?

n

1

n
N5

IMMP — MMP"
MMPM

‘ x100

Note.

MMPM : Measured MMP; MMP " : Average of measured MMP data

MMP®: Predicted MMP, MMP * : Average of predicted MMP data
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Results and discussion

The MMP data were divided into two data
sets consisting of training and validation test
data. In the training phase, alarger part of the
data (80%) was used to train the network and
the remaining data (20%) were used in the
validation phase. In order to get performance
variation information, a total of five runs are
performed. The variation information is
shown in Table 3. As the mean of the
objective function value is near the value
obtained from Run 1, the final parameters of
the networks structure are fixed according to
Run 1. That is, a network with these
specifications could produce the optimum
structure for MMP forecasting. Thus, this
form of network was selected. It must be
mentioned that this optimum structure is in
the sense of our work, thusit is possible for a
different set of data to have a different
optimum structure. It depends on the training
data. The final value of the number of
neurons in the first hidden layer is found to
be 7, and that of the second hidden layer as 5.
The learning and momentum coefficients are
found to be 0.653 and 0.522, respectively,
after optimizing by GA. The scatter plots in
Figs. 5, 6 and 7 provide comparisons of the
measured CO, MMP levels with the neural-
genetic derived ones, as well as those
provided by Alson et al. [9] and Emera and

Sarma [4] using dstatistical and GA-based
methods, respectively. As shown, the neural-
genetic model produces lower error levels
compared with the two other models. Table 4
shows the outputs of statistical analysis for
calibration results from the neural-genetic,
statistical and GA-based models for MMP
forecasting. It is indicated that the devel oped
neural-genetic model has lower calibration
errors than that developed by Alston et al. [9]
and Emera and Sarma [4]. In detail, in the
training phase, the neural-genetic model
improved the Alston et al. [9] model forecast
of about 43% and 32% reduction in RMSE
and MAPE values, respectively. In addition,
improvements of the forecast results
regarding the correlation coefficient (R) and
standard deviation (SD) values during the
training phase were approximately 3.15%
and 13%, respectively. On the other hand, the
neural-genetic model improved the Emera
and Sarma [4] model forecast of about 59.7%
and 59.13% reduction in RMSE and MAPE
values, respectively. Also, for the Emera
and Sarma [4] model, improvements of
the forecast results regarding the correlation
coefficient (R) and standard deviation
(SD) values during the training phase
were approximately 8.8% and 51.31%,
respectively.

Table 3. Performance variation information of GA for different runs.

RUN Objective function Numper of neuronsin Num_ber of neuronsin Lear.ni.ng Momgqtum
value (MSE) hidden layer-1 hidden layer-2 coefficient coefficient
1 0348 7 0.653 0.522
2 0.356 7 0.646 0.582
3 0360 6 0.685 0.622
4 0.341 5 0.645 0.516
5 0337 6 0.654 0.565
Mean 0.348
Iranian Journal of Chemical Engineering, Vol. 3, No. 4 53
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Table 4. Statistical analysis for calibration results from the neural-genetic and statistical models.

Method MAPE RMSE SD(%) R
Neural-genetic (This work) 3.58 0.59 5.75 0.98
Emeraand Sarma[4] (GA) 5.26 1.05 6.61 0.95
Alston et al. [9] (statistical) 8.76 1.49 11.81 0.90
2%
2 .
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Figure 5. The measured versus neural-genetic simulated MMP values.
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Figure 6. The measured versus modeled MMP values (from Alston et al. [9]).
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Figure 7. The measured versus modeled MMP values (from Emera and Sarma[4]).

In addition, in the validation phase as seen in
Figs. 8, 9 and 10, the values with the neural-
genetic model prediction were able to
produce a good forecast, as compared to
statistical models. Table 5 shows the results
of error analysis for prediction outputs from
a developed neural-genetic model and the
two other models. It is indicated that outputs
from the neural-genetic model are more
accurate than those from the models of
Alston et a. [9] and Emeraand Sarma[4]. In
the validation phase, the neural-genetic
model improved the Alston et a. [9] model
forecast of about 69.3% and 58.8% reduction
in RMSE and MAPE values, respectively. In
addition, improvements of the forecast
results regarding the correlation coefficient
(R) and standard deviation (SD) values
during the validation phase were
approximately 7.7% and 58.52%,
respectively. On the other hand, the neural-

genetic model improved the Emera and
Sarma [4] model forecast of about 82% and
76.8% reduction in RMSE and MAPE
values, respectively. Also, for the Emera and
Sarma [4] model, improvements of the
forecast results regarding the correlation
coefficient (R) and standard deviation (SD)
values during the training phase were
approximately 16.7% and 78.6%, respect-
tively. The major advantage of the neural-
genetic approach was the ability to capture
well the minor trend in the MMP series,
while the two other models faled in
producing good results. Thus the results
indicate that the neural-genetic model is able
to identify the events for which it was
designed, although the extent to which this
model can generalize its ability to forecast
events was not included in the training
process.

Table 5. Error analysis for prediction outputs.

Method MAPE  RMSE  SD (%) R
Neural-genetic (this work) 398 0.54 504 0.98
Emeraand Sama[4] (GA) 766 1.46 10.15 0.93
Alstonetd. [9] (statistical) 4745 3.12 2357 0.84
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Figure 8. The measured versus neural-genetic predicted MMP values within 95% accuracy.
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Sensitivity analysis

The analysis of variance (ANOVA) approach
was used to demonstrate the sensitivity
anaysis of the new model and the
dependence of the dependent variable (CO,-
ol MMP) on each of the independent
variables. The results of the senstivity
analysis (shown in Fig. 11) are based on the
rank correlation coefficient calculated
between the output variable (CO,-0il MMP)
and the samples for each of the input
distributions. The higher the correlation
between any input variable and output
variable means higher significant influence
of that input in determining the output's
value. From Fig. 11, it is obvious that the
reservoir temperature has a major impact on
the CO.-0il MMP, and as the temperature
increases, the CO»-0il MMP increases, which
confirms all published correlations. Also, the
effects of oil compositions on the predicted
MMP confirms all published correlations,
whereas increasing MWcs, or volatiles mole
percent leads to an increase in the CO,-ail
MMP. On the other hand, any increasein
the mole percent of the intermediate

components (C,-Cy4, HS, and CO,) causes a
decrease in the CO,-0il MMP. In addition,
the existence of non-CO, components such
as H,S and hydrocarbon components (C; to
C,) critical temperatures greater than the CO,
in the CO, stream has a positive impact on
the MMP, whereas they contribute to a
decrease in the MMP.

Conclusions

Miscible gas flooding is widely employed for
improving or enhancing oil recovery for
many oil reservoirs. A key parameter used
for assessing the applicability of the process
for a reservoir is the minimum miscibility
pres-sure. An inaccurate prediction may
result in significant consequences. For
example, recommendation for a too high
operating level of MMP may result in greatly
inflated operation costs as wel as
occupational health concerns. On the other
hand, if the suggested MMP is too low, the
mi scible displacement process would become
ineffective, leading to a high risk of system
failure. Thus, a higher prediction accuracy
would bring significant economic benefits.

Tew -0.25 | |
Vol./Int | 0.6
MW C5+ | 0.65
Reservoir temp. | 0.7
- 0 © < o N < © ® .
CID o o o o o o

Figure 11. Relative variable impacts on CO, MMP.
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An attempt was made in this study to
investigate the application of a neural-genetic
concept for the prediction of MMP in a gas
injection process. In this study, the neural-
genetic approach is, for the first time, used to
predict MMP. The MMP data derived from
the literature were employed to train and test
some models. A model was successfully
applied to both pure and impure CO;
streams. In the case of the impure CO;
stream, weight-average pseudocritical tem-
perature was used as an indicator to show the
level of contaminates that exist in the CO;
stream. A comparison of the prediction
accuracies of the neural-genetic and other
statistical methods indicated that the neural-
genetic approach was more accurate in
predicting MMP. Thus, the results of this
study suggest that the neural-genetic model is
more reliable than other conventional
methods for predicting MMP. The neural-
genetic approach was able to produce a
higher accuracy than other forcasting
methods, especially under conditions with
limited field information.
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