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 This paper presents using the fractional PImDn controller module 
which manipulates insulin infusion rate to maintain normoglycemia in 
subjects with type 1 diabetes. To prevent severe hypoglycemia, a 
conventional proportional controller is used to regulate glucagon 
infusion rate when the blood glucose levels fall below a threshold. Two 
sets of controller parameters are obtained and evaluated. For the first 
tuning set, clinical data of an oral glucose tolerance test taken from a 
group of healthy subjects are used to obtain the controller parameters 
such that it can mimic a real healthy pancreas. To obtain the second 
tuning set, the controller parameters are optimized through a 
sequential quadratic programming algorithm. Using the second tuning 
set, the in silico 2-hour postprandial test result and comparing it with 
the glucose concentration trajectory of the healthy subjects show that 
the controller performs well in returning the blood sugar levels into the 
glucose homeostasis while keeping the plasma insulin concentration 
within the acceptable physiological range. It is indicated that the 
manipulation of glucagon infusion rate is effective in hypoglycemia 
prevention if more aggressive controller settings are chosen or 
dysfunctional insulin infusion occurs. 
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1. Introduction 
Diabetes mellitus is a widespread metabolic 
disease that affects hundreds of millions in 
the world. There are two types of diabetes. 
Type 1 diabetes is an autoimmune disease in 
which insulin producing cells in the pancreas 
are destructed leading to a complete halt of 
insulin secretion. The patients with type 1 
diabetes require daily insulin injections to 
reduce the elevated blood glucose level and 

maintain it within the physiological range. 
Type 2 diabetes, on the other hand, is 
characterized by multiple abnormalities in 
different body organs resulting in increasing 
blood sugar levels [1]. Glucose homeostasis 
in patients with type 2 diabetes can be 
maintained by suitable dietary program and 
exercise [2]; however, patients with 
progressed type 2 diabetes require oral 
medication and, eventually, insulin injections 
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to keep the glucose levels in a normal 
physiological range. 
   Blood glucose levels are regulated on a 
negative feedback basis in a healthy human 
body. Continuous insulin infusion and 
subcutaneous insulin injections are the two 
current treatment methods for the insulin-
dependent diabetic subjects; due to their 
inherent open-loop nature, normoglycemia is 
hardly maintained for the patients [3]. 
Therefore, to achieve normoglycemia, an 
alternative treatment method is used to design 
a device that mimics the closed-loop 
mechanism of blood glucose regulation in a 
healthy human body. This device, often 
referred to as artificial pancreas, has three 
main components: a mechanical highly 
accurate pump, an in vivo glucose sensor 
which provides continuous glucose 
monitoring, and a control module that 
calculates instantaneous insulin infusion rate 
based on the measured blood glucose 
concentration [3, 4]. 
   The risk of severe hypoglycemia, a limiting 
factor in the glycemic control, is a threat to 
the insulin-dependent diabetic subjects, which 
is sometimes fatal [5-7]. Designing a 
controller strategy that prevents 
hypoglycemia is vital for the patients. One 
solution for preventing hypoglycemia is using 
glucagon infusion whenever the glucose 
levels drop below a certain threshold [8]. 
Exogenous glucagon infusion induces more 
endogenous glucose production which in turn 
lowers the risk of hypoglycemia. Double 
purpose pumps which enable delivering both 
insulin and glucagon together have made this 
solution practical [9, 10]. Designing a control 
module for the artificial pancreas based on 
this solution might be helpful in preventing 
severe hypoglycemia.  
   Many studies have been conducted since the 

early 1970s to design a control algorithm to 
maintain glucose homeostasis for the insulin-
dependent diabetic subjects including 
conventional PID controller [11-14], sliding 
mode control [15, 16], model predictive 
control [17, 18], model-based control [19], 
robust H control [20, 21], etc. and are 
reviewed in [22-24]. However, the risk of 
severe hypoglycemia still remains as an 
unresolved problem for the designed 
controllers [25, 26]. In the present study, we 
have employed a fractional PImDn control 
module for glycemic control. This controller 
regulates the blood glucose concentration by 
adjusting the insulin infusion rate. To avoid 
hypoglycemia, alongside the insulin loop, 
another control loop with a conventional 
proportional (P) controller is utilized for the 
manipulation of glucagon infusion rate. 
   To assess the controller performance, we 
have performed computer simulation using an 
adjusted mathematical model developed by 
Vahidi et al. [27] and is presented briefly in 
the following section. To have the controller 
mimicking a real healthy pancreas, using a 
clinical dataset from the healthy subjects 
group, a set of tuning parameters is obtained 
for the fractional PImDn controller through 
solving an optimization problem to generate a 
glucose concentration trajectory similar to 
that of the healthy subjects. Another set of the 
controller tuning parameters is obtained based 
on integral of time multiplied square error 
(ITSE) minimization through a sequential 
quadratic programming algorithm. Comparing 
the controller response with the response of 
the glucose regulatory system of the group of 
healthy subjects shows that the controller is 
able to regulate the blood sugar level well 
while keeping the plasma insulin 
concentration within the physiological range. 
The risk of severe hypoglycemia is also 
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reduced by employing glucagon control loop 
if anything goes wrong with the insulin 
control loop or more aggressive controller 
settings are chosen either by intention or by 
mistake. 

2. Methodology 
2.1. Mathematical model 
One approach in mathematical modeling of 
type 1 diabetes mellitus is to select an 
appropriate model developed for healthy 
subjects and adjust it for type 1 diabetic 
subjects. Since the destruction of the 
pancreatic beta cells is followed by a 
complete halt of insulin secretion accounts for 
type 1 diabetes, it is sufficient to use a 
mathematical model developed for healthy 
subjects with zero pancreatic insulin secretion 
rate [4, 28, 29]. The same approach in type 1 
diabetes modeling is used by considering the 
mathematical model developed for healthy 
subjects and setting its pancreatic insulin 
secretion rate to zero. Several mathematical 
models proposed for simulating glucose 
regulatory system in healthy human subjects 
started from simple models by Bolie [30] and 
Ackerman et al. [31] in the early 1960’s to 
more complicated models developed by 
Cobelli and Mari [32], Sorensen [33], 
Hovorka et al. [34], and Fessel et al. [35]. The 
mathematical model used in the present study 
is an adjusted form of a detailed 
compartmental model that considers the 
regulatory hormonal effect of insulin, 
glucagon, and incretins on blood sugar levels. 
This model was developed by Vahidi et al. for 
healthy and type 2 diabetic subjects [27] 
based on an earlier model by Sorensen [33], 
which was modified later by Vahidi et al. 
[36].  
   The mathematical model comprises four 
main sub-models, representing blood glucose, 

insulin, glucagon, and incretins 
concentrations in the body. In the 
compartmental modeling approach, the 
human body is divided into a number of 
compartments each of which represents a 
certain organ or a region of the body. Figure 1 
depicts the insulin sub-model with seven 
compartments. Sub-compartments are 
considered where significant transport 
resistance between the capillaries and 
interstitial fluid space exists [33] (e.g., the 
periphery compartment has two sub-
compartments in the insulin sub-model, as 
shown in Figure 1). The number of 
compartments differs in each sub-model. The 
glucose sub-model has the same 
compartments as the insulin sub-model except 
for the pancreas compartment not considered 
as an individual compartment in the glucose 
sub-model. The whole body is considered as 
one compartment in the glucagon and incretin 
sub-models [27]. The mathematical model 
comprises 27 nonlinear ordinary differential 
equations resulting from mass balance 
equations over all sub-compartments. The 
model equations are available in Appendix. 

2.2. Fractional PImDn controller 
The fractional PImDn controller in Laplace (s) 
domain has the following form: 

u(s) = kc �1 + 1
τi

1
sm

+ τdsn� e(s)                 (1) 

where 𝑘𝑘𝑐𝑐, 𝜏𝜏𝑖𝑖, and 𝜏𝜏𝑑𝑑 are the tuning parameters 
of the controller proportional, integral, and 
derivative terms, respectively; m and n are 
positive fractional numbers, representing the 
exponent of the integral and derivative terms, 
respectively; u(s) represents the controller 
output, and e(s) is the error, given by 
𝑒𝑒(𝑠𝑠) = 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) − 𝑦𝑦(𝑠𝑠), with 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) as the 
desired value of the controlled variable and 
𝑦𝑦(𝑠𝑠) as the measured controlled variable. 
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Figure 1. Schematic diagram of insulin sub-model. The rectangular blocks represent the sub-model 
compartments and the arrows indicate blood circulation directions. 

 

Realization of fractional order systems is not 
trivial. One way to study such systems is 
through linear approximation. This technique 
is based on Bode diagrams in frequency 
domain in which a linear approximation is 
considered for the fractional order integrator 
[37, 38]. We have utilized this method for the 
realization of the fractional PImDn controller 
briefly described in the following. 
   Consider the following equation 
representing a fractional integrator of order m 
in Laplace domain: 

F(s) =
1

sm
 (2) 

   The Bode diagram of the above transfer 
function is characterized by a slope of -20 m 
dB/decade. This line is linearly approximated 
by a number of connected zig-zag lines with 
the slopes of 0 dB/decade and -20 dB/decade 
[37]. For a single-fractal system, the 
equations representing the linear 

approximation of 𝐹𝐹(𝑠𝑠) are: 

F(s) =
1

sm
≈

1

�1 + s
PT
�
m ≈

∏ �1 + s
Zi
�N−1

i=0

∏ �1 + s
Pi
�N

i=0

 (3) 

  

N = 1 + Integer�
Log�ωmax

PT
�

Log(ab)
� (4) 

a = 10y/10(1−m) (5) 

b = 10y/10m (6) 

P0 = PT10y/20m (7) 

Zi = Pia      i = 0, … , N (8) 

Pi+1 = Zib      i = 0, … , N (9) 

where y, in dB, is the discrepancy between the 
actual line and the linearly approximated lines 
and 𝑃𝑃𝑇𝑇 is the corner frequency of the transfer 
function in Eq. (3). 𝑃𝑃𝑇𝑇 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 represent the 
minimum and maximum frequency ranges 
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into which the approximation is valid, 
respectively. The numerical values of the 
latter two parameters are arbitrarily chosen to 
cover the desired approximation range. 
   The described method for fractional 
integrator approximation is valid when m is at 
(0, 1] interval. For the larger values of the 
fractional integrator exponent (i.e., m>1), the 
fractional integrator can be written into the 
following form: 

1
sm

=
1
sn

1
sγ

 (10) 

where n is an integer, and 𝛾𝛾 has a value at (0, 

1] interval. The second portion (i.e., 1
𝑠𝑠𝛾𝛾

) is 
linearly approximated by the described 
method. 

2.3. The controller structure 
To control the blood glucose levels within the 
normal range, a fractional PImDn controller is 
employed. The controller acts on the 
deviation of peripheral glucose concentration 
(where blood samples are normally taken, 
indicated in Figure 1) from its desired value 
by regulating the insulin infusion rate. The 
desired value for peripheral glucose 
concentration is considered to be 96 mg/dl. 
This value corresponds to the healthy 
subjects’ fasting peripheral glucose 
concentration whose clinical data sets had 
been collected and used to develop the 
mathematical model [27]. Since the human 
body is consuming glucose continuously, it 
constantly requires insulin. Therefore, a 
continuous constant insulin infusion rate (i.e., 
7.08 mU/min) is considered. This value is 
calculated such that the peripheral glucose 
concentrations remain constant under glucose 
homeostasis condition at 96 mg/dl when no 
exogenous hydrocarbon is consumed. This 
value is added to the controller output; hence, 

the insulin infusion rate is equal to the 
summation of this value and the controller 
output. 
   In order to prevent severe hypoglycemia, 
another control loop is utilized which 
regulates the glucagon infusion rate. This 
controller also acts on the deviation of 
peripheral glucose concentration from its 
desired value. Since no set-point change 
occurs in blood glucose concentration 
regulation and no glucagon infusion is desired 
when the peripheral blood sugar level is 
above the set-point (i.e., above 96 mg/dl), a 
simple proportional controller inherently 
stops glucagon infusion when the blood 
glucose level is above its set-point suffices for 
this loop. 
   Another safety measure for hypoglycemia 
prevention is to stop infusing insulin when the 
peripheral blood sugar level falls below a 
certain threshold considered to be 80 mg/dl. 
This prevents excessive amount of infused 
insulin, which may lead to hypoglycemia. 

3. Results and discussion 
3.1. Model initialization 
As mentioned earlier, the mathematical model 
comprises 27 nonlinear ordinary differential 
equations (ODEs). The required initial values 
for solving the ODEs are obtained from the 
model’s steady-state solution. To find the 
steady-state solution, the time derivative 
terms of all ODEs are set to zero and the ODE 
set turns into a set of nonlinear algebraic 
equations. Solving the obtained set of 
equations results in the required initial values 
for the ODEs. At the steady states, the 
concentrations of all species and, 
consequently, all metabolic rates are at basal 
levels. More details on the steady-state 
solution are presented in [27]. 
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3.2. Mimicking a real healthy pancreas 
To have the controller generating a response 
similar to a real healthy pancreas, the tuning 
parameters of the fractional PImDn controller 
are obtained through solving an optimization 
problem using a clinical data set from a 
healthy subjects group whose blood sample 
measurements were used in [27] to estimate 
the Vahidi et al. model parameters and 
validate the model results. The data set 
belongs to a group of ten healthy subjects 
(two women and eight men) undergone a 50 g 
OGTT during which 17 blood samples were 
taken. More details on the used clinical data 
set is available in [27]. The objective function 
of the optimization problem is the deviation 
of the controller response (i.e. the peripheral 
glucose concentration values from the model) 
and the glucose concentration levels from the 
clinical data set, as follows: 

min
Θ

��GPCm
i − GPCc

i �
2

n

i=1

 (11) 

where 𝐺𝐺𝑃𝑃𝑃𝑃𝑚𝑚
𝑖𝑖  is the peripheral glucose 

concentration from the model at time i, 𝐺𝐺𝑃𝑃𝑃𝑃𝑐𝑐
𝑖𝑖  

is the corresponding glucose concentration 
from the clinical measurements and n is the 
number of data points.  
   Performing an in silico 50 g OGTT and 

solving the optimization problem, two sets of 
tuning parameters are obtained indicated in 
Table 1. For the first tuning set, all clinical 
measurements are considered in Eq. (11) and 
for the second one, the clinical measurements 
within the time interval 0 to 100 min are 
considered (the glucose concentrations of 
these measurements are above or equal to the 
glucose concentration desired value). 
Although the controller with the first tuning 
set results in a very similar response to the 
real healthy pancreas (see Figure 2); however, 
considering all clinical measurements results 
in a small 𝜏𝜏𝑖𝑖, yielding large integral action 
(see the first tuning set) in comparison with 
the second tuning set. This large integral 
action increases the risk of hypoglycemia if 
higher amount of glucose is consumed. To 
show this, an in silico 75 g OGTT is 
performed and the results are shown in Figure 
3. As this figure shows, a large integral action 
of the first tuning set results in a large 
undershoot in the glucose concentration 
trajectory and a significant increase in the risk 
of hypoglycemia, while the other tuning set 
generates a safe glucose concentration profile. 
Therefore, large integral action should be 
avoided in tuning the glucose controller 
setting. 

 
Figure 2. Peripheral glucose concentration for an in silico 50 g OGTT on diabetic subjects using two controller 
tuning sets (indicated in Table 1): solid line for the controller with tuning set 2 and dashed line for the controller 
with tuning set 1. Circles ( • ) are the results of a 50 g OGTT clinical trial on a group of healthy human subjects. 
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Table 1 
Two sets of the fractional PImDn controller tuning parameters. 

 kc τi τd m n 
Tuning set 1 0.143 27.7 11.65 1.022 0.53 
Tuning set 2 0.187 368.8 7.37 1.175 0.42 

 

 

Figure 3. Peripheral glucose concentration for an in silico 75 g OGTT on diabetic subjects using two 
controller tuning sets (indicated in Table 1): solid line for the controller with tuning set 2 and dashed line 

for the controller with tuning set 1. 
 
3.3. Controller optimal tuning 
Tuning the fractional PImDn controller has 
been the topic of various studies [39-42]. The 
tuning method suggested in the literature is 
mostly based on optimizing the controller 
parameters by minimizing the integral of 
absolute error (IAE) [42] or the integral of 
square error (ISE) [39] for a first-order plus 
dead time (FOPDT) model of a given system. 
Several sets of control rules are also provided 
correlating the controller tuning parameters to 
the parameters of the FOPDT model.  
   In the present study, we have used a similar 
tuning method to find the optimal controller 
parameters. Due to the availability of the 
system detailed model, there is no need for 
the FOPDT model. The system model can be 

used directly and the controller tuning 
parameters can be obtained by minimizing the 
IAE, ISE or other similar objective functions. 
Here, since reducing the large and prolonged 
errors are desirable for controlling the blood 
glucose concentration, the integral of time 
multiplied square error (ITSE) minimization 
criterion is selected as the controller tuning 
method. All programming is done in 
MATLAB environment. 
   To find the optimal controller tuning 
parameters, dynamic simulation of a 50 g oral 
glucose tolerance test (OGTT) is performed 
and the controller parameters are tuned by 
minimizing the ITSE. The obtained controller 
tuning parameters are shown in Table 2. 

 

Table 2 
The optimal tuning parameters of fractional PImDn controller. 

Controller kc τi τd m n ITSE 
Fractional PImDn 3.427 335.9 8.46 0.52 0.83 4.5x106 
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As the controller tuning parameters in Table 2 
show, the integral term, 𝜏𝜏𝑖𝑖, has a relatively 
large value which yields poor integration 
action and slightly affects the controller’s 
response. The reason for the large integral 
terms is that the controller tuning parameters 
are obtained by minimizing the ITSE through 
a load rejection problem (50 g OGTT) where 
the amount of load is not permanent and its 
effect on the glucose concentration vanishes 
eventually by itself. Therefore, only a small 
integration action is required to eliminate any 
possible existing error. Furthermore, a large 
integral action increases the risk of 
hypoglycemia (discussed in Section 3.5), 
making its smaller values more desirable. 

3.4. Controller response assessment 
The glycemic controller for a type 1 diabetic 
subject is supposed to serve as a substitute for 
the glucose regulatory system of a healthy 
human subject. Thus, it is relevant to have a 
comparison between the response of the 
designed controller and that of a healthy 
human subject. To do so, dynamic simulation 
of a 50 g OGTT for a typical healthy human 
subject is performed using the mathematical 
model developed by Vahidi et al. [27] (i.e., 
the same model used in the present study for 
controlling purposes with nonzero pancreatic 
insulin secretion). The clinical dataset used in 
the previous section (by Vahidi et al. [27]) is 
also indicated. 
   Figures 4 (a) and (b) show the peripheral 
glucose and insulin concentration profiles 
resulting from the dynamic simulation of a 50 
g OGTT within which the performance of the 
fractional PImDn glycemic controller is 
compared with that of the glucose regulatory 
system of a typical healthy human subject. As 
Figure 4 (a) shows, the controller provides a 
peripheral glucose concentration profile 

which falls below the same profile that 
resulted from the healthy subject’s glucose 
regulatory system. This suggests that using 
the designed controller strategy guarantees 
the glycemic control through which the blood 
glucose concentration remains within the 
normal physiological range.  
   Prevention of hyperinsulinemia must be 
also considered in the insulin therapy. The 
maximum postprandial physiological level of 
plasma insulin concentration for a healthy 
human subject is approximately 170 mU/l 
[43]; as Figure 4 (b) shows, the peripheral 
insulin level peak is around 170 mU/l which 
meets the safety requirements for the 
physiological insulin level. Although the 
resulted glucose profile is obtained at the cost 
of having the insulin concentration profile 
higher than the profile belonging to the 
healthy subjects, since the plasma insulin 
concentration is still within the normal 
physiological range, the overall controller 
performance is acceptable. To guarantee 
keeping the insulin concentration lower than 
the maximum allowable level, the maximum 
insulin infusion rate is selected to be 150 
mU/min. This value is obtained by dynamic 
simulation of various values of insulin 
infusion rate and is implemented for all 
simulations. It can be adjusted to any other 
value to guarantee a maximum possible blood 
insulin concentration. 

3.5. Glucagon manipulation 
To indicate the importance of glucagon 
manipulation, two scenarios are simulated. In 
the first scenario, a failure in the insulin 
control loop is simulated. It is assumed that 
while the body is resting at glucose 
homeostasis, the fractional PImDn controller 
fails to operate and no longer manipulates the 
insulin infusion rate and a constant rate of 
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insulin is infused continuously. The constant 
insulin infusion rate is arbitrarily chosen at 14 
mU/min (i.e., approximately twice as big as 
the normal constant infusion rate). The 
simulation results are indicated in Figure 5. 
As Figure 5 (a) shows, when the control loop 
fails to manipulate the insulin infusion rate 
and a little higher amount of insulin than the 
normal continuous rate (i.e., 7.08 mU/min) is 
infused, the plasma glucose concentration 
falls below normoglycemia. The higher the 
continuous infusion rate, the lower the plasma 
glucose concentration. Continuous infusion of 
insulin twice bigger than the normal infusion 
rate causes lowering the peripheral glucose 
concentration close to 70 mg/dl which is the 
boundary of hypoglycemia for diabetic 
subjects [44]. As the simulation results show, 
a simple proportional controller manipulating 
glucagon infusion rate is able to keep the 

plasma glucose concentration within the 
physiological range by inducing more 
endogenous glucose production (see Figure 5 
(b)). As Figure 5 (b) shows, the hepatic 
glucose production rate starts from 155 
mg/min (i.e., the basal hepatic glucose 
production rate), and when no glucagon 
infusion is present, its final value is around 
165 mg/min; with glucagon infusion, the final 
hepatic glucose production rate is around 185 
mg/dl which indicates its augmented amount 
due to the higher plasma glucagon 
concentration. Although the proportional 
controller has an intrinsic offset and the 
utilized controller is not able to return the 
peripheral glucose concentration exactly to its 
set-point (i.e., 96 mg/dl), the control loop 
regulates the glucose level very well and 
keeps it close enough to its set-point and 
within the normoglycemia range. 

 

 

Figure 4. Peripheral glucose concentration profile for an in silico 50 g OGTT, solid line for the fractional 
PImDn controller, and dashed line for the glucose regulatory system of a typical healthy subject. Circles (•) 

are the results of a clinical trial of a 50 g OGTT on a group of healthy human subjects. 
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In the second scenario, aggressive controller 
setting is considered (either intentionally or 
mistakenly). It is assumed that the value of kc 
for the fractional PImDn controller is selected 
to be twice as big as its optimal value (i.e., 2 x 
3.427 = 6.854). In general, higher value of the 
proportional term results in a more aggressive 
response; therefore, a large undershoot close 
to the glucose concentration set-point is 

expected. Figure 6 shows the results of a 50 g 
OGTT with the new fractional PImDn 
controller setting. When the glucagon control 
loop is off and no glucagon is infused, a big 
undershoot in blood glucose concentration 
occurs. Utilizing the glucagon control loop 
reduces the undershoot amount significantly 
and maintains the plasma glucose 
concentration close to its normoglycemia. 

 

Figure 5. The body response following a failure in the insulin control loop (solid line for the presence of 
exogenous glucagon infusion and dashed line for the absence of exogenous glucagon infusion): (a) 
peripheral glucose concentration profile, (b) hepatic glucose production profile, and (c) exogenous 

glucagon infusion rate. 



Designing a Glycemic Control Strategy to Maintain Glucose Homeostasis and Prevent Hypoglycemia for 
Subjects with Type 1 Diabetes 

 

44 Iranian Journal of Chemical Engineering, Vol. 15, No. 3 (Summer 2018) 
 

 

Figure 6. The peripheral glucose concentration profile for an in silico 50 g OGTT that resulted from 
aggressive controller settings, solid line for the presence of exogenous glucagon infusion, and dashed line 

for the absence of exogenous glucagon infusion. 
 

4. Conclusions 
In the present study, we employed a fractional 
PImDn controller to regulate the plasma 
glucose concentration of a typical type 1 
diabetic subject by manipulating insulin 
infusion rate. The optimal setting of the 
controller was obtained by minimizing the 
integral of time multiplied square error 
through an in silico 50 g OGTT. The 
controller strategy was assessed by comparing 
the controller response with the response of 
the glucose regulatory system of a group of 
typical healthy subjects, and it was indicated 
that the controller strategy was able to control 

the plasma blood concentration within the 
physiological range while keeping the insulin 
level below its maximum allowable value; 
therefore, the strategy could be utilized by an 
artificial pancreas to control the blood sugar. 
To have the controller generating a similar 
glucose concentration trajectory to that of a 
typical real healthy pancreas, the clinical data 
set utilized in the controller response 
assessment was used again to obtain a new set 
of tuning parameters. It was indicated that the 
controller was able to provide a similar 
response to that of the healthy glucose 
regulatory system. It was shown that a 
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controller with a moderate integral action 
should have been chosen to reduce the risk of 
hypoglycemia. For safety purposes, it was 
recommended to use the glucagon infusion to 
avoid hyperglycemia. The effectiveness of 
this strategy was evaluated by dynamic 
simulation of two scenarios: one for the 
fractional PImDn controller failure and one for 
utilizing more aggressive fractional PImDn 
controller settings. It was indicated that 
manipulating the glucagon infusion with a 
simple proportional controller prevents the 
risk of hypoglycemia by inducing more 
endogenous hepatic glucose production which 
compensates for increased glucose uptake 
stimulated by excessive level of insulin. 

Nomenclature 
Model variables in the glucose sub-model 
D oral glucose amount [mg]. 
G glucose concentration [mg/dl]. 
M multiplier of metabolic rates. 
q glucose amount in GI tract [mg]. 
Q vascular blood flow rate [dl/min]. 
r metabolic production or 

consumption rate [mg/min]. 
Ra rate of glucose appearance in the 

blood stream [mg/min]. 
T transcapillary diffusion time 

constant [min]. 
t time [min]. 
V volume [dl]. 
Model variables in the insulin sub-model 
I insulin concentration [mU/l]. 
M multiplier of metabolic rates. 
r metabolic production or 

consumption rate [mU/min]. 
S insulin secretion rate [U/min]. 
T transcapillary diffusion time 

constant [min]. 
t time [min]. 
V volume [dl]. 
Model variables in the glucagon sub-model 
Γ normalized glucagon 

concentration. 
M multiplier of metabolic rates. 
r normalized metabolic production 

or consumption rate [dl/min]. 
V volume [dl]. 
t time [min]. 
First subscripts 

 glucagon. 

B basal condition. 
G glucose. 
I insulin. 
Second superscript 
∞ final steady state value. 
Metabolic rate subscripts 
BGU brain glucose uptake. 
GGU gut glucose uptake. 
HGP hepatic glucose production. 
HGU hepatic glucose uptake. 
IVG intravenous glucose infusion. 
IVI intravenous insulin infusion. 
IVΓ intravenous glucagon infusion 
KGE kidney glucose excretion. 
KIC kidney insulin clearance. 
LIC liver insulin clearance. 
MΓC metabolic glucagon clearance. 
PΓC plasma glucagon clearance. 
PΓR pancreatic glucagon release. 
PGU peripheral glucose uptake. 
PIC peripheral insulin clearance. 
PIR pancreatic insulin release. 
RBCU red blood cell glucose uptake. 
First subscripts 
A hepatic artery. 
B brain. 
G gut. 
H heart and lungs. 
L liver. 
P periphery. 
S stomach. 
∞ final steady state value. 
Second subscripts (if required) 
C capillary space. 
F interstitial fluid space. 
l liquid. 
s solid. 
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Appendix 
1. Glucose sub-model 
The mass balance equation over each sub-compartment in the glucose sub-model results in 
following equations: 

VBCG
dGBC

dt
= QB

G(GH − GBC) −
VBFG

TBG
(GBC − GBF) (1) 

VBFG
dGBF

dt
=

VBFG

TBG
(GBC − GBF)− rBGU (2) 

VHG
dGH
dt

= QB
GGBC + QL

GGL + QK
GGK + QP

GGPC − QH
GGH − rRBCU + rIVG (3) 

VGG
dGG
dt

= QG
G(GH − GG) − rGGU + Ra (4) 

VLG
dGL
dt

= QA
GGH + QG

GGG − QL
GGL + rHGP − rHGU (5) 

VKG
dGK
dt

= QK
G(GH − GK) − rKGE (6) 

VPCG
dGPC

dt
= QP

G(GH − GPC) −
VPFG

TPG
(GPC − GPF) (7) 

VPFG
dGPF

dt
=

VPFG

TPG
(GPC − GPF) − rPGU (8) 

The metabolic rates for the glucose sub-model are summarized below: 

rBGU = 70 (9) 

rRBCU = 10 (10) 

rGGU = 20 (11) 

rPGU = MPGU
I MPGU

G  rPGUB   (12) 

rPGUB = 35 (13) 

MPGU
I = 3.234 + 2.999 tanh[0.199(IPF IPFB⁄ − 5.83)] (14) 

MPGU
G = GPF GPFB⁄  (15) 

rHGP = MHGP
I MHGP

G  MHGP
Γ  rHGPB  (16) 

rHGPB = 35 (17) 

d
dt

MHGP
I = 0.04(MHGP

I∞ − MHGP
I ) (18) 
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MHGP
I∞ = 0.838− 0.789 tanh[0.535(IL ILB⁄ − 1.39)] (19) 

MHGP
G = 1.113− 1.105 tanh[0.5(GL GLB⁄ − 0.794)] (20) 

MHGP
Γ = 2.7 tanh[0.39Γ ΓB⁄ ]− f (21) 

d
dt

f = 0.0154[�
2.7 tanh[0.39Γ ΓB⁄ ]− 1

2 � − f] (22) 

rHGU = MHGU
I MHGU

G  rHGUB   (23) 

rHGUB = 20 (24) 

d
dt

MHGU
I = 0.04(MHGU

I∞ −MHGU
I ) (25) 

MHGU
I∞ =

2.0 tanh[c(IL ILB⁄ − d)]
2.0 tanh[c(1 − d)]

 (26) 

MHGU
G = 6.857 + 6.857 tanh[2.03(GL GLB⁄ − 1.626)] (27) 

rKGE = 71 + 71 tanh[0.11(GK − 460)]      0 ≤ GK < 460 
(28) 

rKGE = −330 + 0.872GK                                        GK ≥ 460 

To calculate the amount of glucose absorption in the GI tract, Ra, a model proposed by Dalla Man 
et al. [45] was selected and added to the glucose sub-model in our previous work. The model 
equations are: 

dqSs
dt

= −0.0688qSs + Dδ(t) (29) 

dqSl
dt

= −kemptqSl + 0.0688qSs (30) 

dqint
dt

= −0.421qint+kemptqSl (31) 

kempt =
0.0434

2
{tanh[φ1(qSs + qSl − 0.82D)]− tanh[φ2(qSs + qSl − 0.00236D)] + 2} (32) 

φ1 =
5

2D(1 − 0.82)
 (33) 

φ2 =
5

0.0047D
 (34) 

Ra = 0.379qint (35) 

where 𝛿𝛿(𝑡𝑡) is the impulse function. 

2. Insulin sub-model 
The mass balance equation over the sub-compartments in the insulin sub-model results in the 
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following equations:  

VBI
dIB
dt

= QB
I (IH − IB) (36) 

VHI
dIH
dt

= QB
I IB + QL

I IL + QK
I IK + QP

I IPV − QH
I IH (37) 

VGI
dIG
dt

= QG
I (IH − IG) (38) 

VLI
dIL
dt

= QA
I IH + QG

I IG − QL
I IL + rPIR − rLIC + rIVI (39) 

VKI
dIK
dt

= QK
I (IH − IK) − rKIC (40) 

VPCI
dIPC

dt
= QP

I (IH − IPC)−
VPFI

TPI
(IPC − IPF) (41) 

VPFI
dIPF

dt
=

VPFI

TPI
(IPC − IPF) − rPIC (42) 

The metabolic rates for the insulin sub-model are summarized below: 

rLIC = 0.4[QA
I IH + QG

I IG + rPIR] (43) 

rKIC = 0.3QK
I IK (44) 

rPIC =
IPF

[�1 − 0.15
0.15QP

I � −
20
VPFI

]
 

(45) 

rPIR = 0 (46) 

3. Glucagon sub-model 
The glucagon sub-model has one mass balance equation over the whole body as follows: 

VΓ dΓ
dt

= rPΓR − rPΓC (47) 

The metabolic rates for the glucagon sub-model are summarized below: 

rPΓC = 9.1Γ (48) 

rPΓR = MPΓR
G MPΓR

I rPΓRB  (49) 

MPΓR
G = 1.31− 0.61tanh [1.06�GH GHB⁄ − 0.47�] (50) 

MPΓR
I = 2.93− 2.09tanh [4.18�IH IHB⁄ − 0.62�] (51) 

rPΓRB = 9.1 (52) 
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4. Incretins sub-model 
The main role of Incretins hormones in glucose metabolism is stimulating the pancreatic insulin 
secretion following glucose digestion in the GI tract. Since pancreatic secretion is halted in type 1 
diabetic subjects, equations belonging to the incretins sub-model are not usable in type 1 diabetes 
modeling and are not shown here.  
   The parameters of the described model are available in [36]. 
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