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 A three-layer artificial neural network (ANN) model was developed to 
predict the remained DO (deoxygenation) in water after DO removal 
with an enzymatic granular biocatalyst (GB) based on the 
experimental data obtained in a laboratory stirring batch reactor 
study. In enzymatic method for removing dissolved oxygen of water, 
glucose oxidase accelerates the reaction between O2 and glucose. 
Therefore, oxygen is removed. The effects of operational parameters, 
such as initial pH, initial glucose concentration, and temperature, on 
DO removal were investigated. On the basis of batch reactor test 
results, the optimum value of operating temperature, glucose 
concentration, and pH were found to be 30 oC, 80 mM, and 7, 
respectively. The less dissolved oxygen in water there is, the more 
prevention of corrosion will occur. In optimum operating condition, 
the concentration of DO reached zero. After back-propagation 
training, the ANN model was able to predict the remaining DO with a 
tangent sigmoid function (tansig) at hidden layer with 7 neurons and a 
linear transfer function (purelin) at the output layer. The linear 
regression between the network outputs and the corresponding target 
was proven to be satisfactory with a correlation coefficient of 0.995 for 
three model variables used in this study. 
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1. Introduction 
Water deoxygenation, as a necessary step for 
preventing problems such as corrosion caused 
by dissolved oxygen (DO), is a requirement in 
many industries [1-3]. Methods for 

deoxygenation of water that have been used 
till now can be classified in two main groups, 
i.e., physical and chemical methods. Physical 
methods include thermal degassing, vacuum 
degassing, nitrogen bubbling and 
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deoxygenating through membrane modules, 
while chemical methods are involved with 
utilization of chemical agents such as 
hydrazine, sodium sulfite, and hydrogen [4-
6]. Electrochemical method is also proposed 
for deoxygenation of water [7]. For this 
objective, a biological method has been 
proposed recently. In this method, DO 
removal is conducted by oxidation of glucose 
as a biological material by DO with a low 
reaction rate [8]. 
   Oxidoreductases (Enzyme Commission 
[EC] primary class 1) catalyze the oxidation 
reaction of one chemical species (a reducing 
agent or electron donor) with the concurrent 
reduction of another (an oxidizing agent or 
electron acceptor) in the form A- +B→A+B-

[9]. 
   Oxidoreductases can act in a wide range of 
both organic substrates including alcohols, 
amines and ketones and inorganic substrates 
including small anions such as sulfite and 
metals such as mercury[9]. Glucose 
oxidase(GOD) is one of the categories that 
has attracted attention because of its 
robustness and stability [10]. GOD is a 
flavoprotein which catalyses the oxidation 
reaction of β-D-glucose to D-glucono- δ-
lactone and H2O2 using molecular oxygen as 
an electron acceptor[11]. This reaction can be 
divided into a reductive and an oxidative step. 
In the reductive half reaction, GOD catalyzes 
the oxidation of β-D -glucose to D -glucono- 
δ-lactone, which is non-enzymatically 
hydrolyzed to gluconic acid [11]. 
   In the oxidative half reaction, the reduced 
GOD is reoxidized by oxygen to yield H2O2. 
It catalyzes glucose and O2 reaction into H2O2 
and gluconic acid [11]. Because of high cost 
of enzyme production, its stability and 
reusability in a process is an obligation that 
can be achieved by enzyme immobilization 

[12]. Immobilization of an enzyme on a stable 
and insoluble support leads to heterogeneous 
processes, which are attractive on an 
industrial scale [8]. Common techniques of 
immobilization include covalent binding, 
entrapment, adsorption ionic binding, affinity 
binding, and cross linking [13]. Although 
adsorption method, caused by interaction 
between enzyme and support, is limited 
because of tendency of enzyme to desorb 
from the support, its simplicity and 
reversibility have led to its extensively 
utilization over the recent few decades [12]. 
Various supports, such as Al2O3, SiO3, and 
gold(Au) nano-particles, have been used for 
GOD immobilization [14-21]; mesoporous 
MnO2 particles have been used successfully 
for GOD immobilization and DO removal[8]. 
The ability of MnO2 particles for hydrogen 
peroxide decomposition has made it 
considerably significant for enzymatic 
deoxygenation. 
   In this paper, biological deoxygenation of 
water with granular biocatalysts (GB), which 
are prepared by immobilization of GOD on 
MnO2 mesoporous particles, and utilization of 
calcium alginate as a binder will be 
introduced. Experiments are done for 
studying influencing parameters behavior on 
GB activity, and the optimum level of each 
parameter was determined. Artificial neural 
network (ANN) was also used for modeling 
obtained data and predicting removal of DO 
by GB in several conditions. Inspired by 
psychology of human brain and nervous 
system, ANN has neurons, synaptic weights, 
and activation function and has mechanism of 
self-learning, which can be taught to learn 
correlative patterns between variables and can 
be used subsequently to predict output from 
new inputs and is able to make correlation 
between memorization and information [22-
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25]. These features have led ANN to be 
utilized in so many fields such as process 
control, system classification, and 
communication [26]. The most significant 
characteristic of modeling based on ANNs is 
that the material description of involved 
process is not required [27, 28]. When data of 
a complex system enter an ANN, it can create 
a suitable model; even the data are incomplete 
[23]. Correlation of a set of input data to a set 
of output data is the main purpose of ANN 
that is conducted by training with input and 
output data [25, 26]. 
   On the basis of obtained experimental data, 
a three-layer ANN model was proposed using 
a back propagation algorithm to predict DO 
removal by GB and optimize the reaction 
condition as a novelty. In addition, an 
optimization study of determining the optimal 
network structure was conducted. Finally, 
outputs obtained from the ANN modeling 

were compared with experimental data; the 
advantages and further developments were 
discussed, too. 

2. Theoretical Framework 
2.1. Artificial neural network 
ANNs as predictive computational models, 
which simulate neural system of human brain, 
have attracted great interest during the last 
decades. In this work, multilayer feed-
forward ANN with one hidden layer has been 
used. All the neurons are connected with 
different weights (wij). For each neuron, the 
weighted input values are summed and a 
threshold value (bj) is added. Then, a non-
linear transfer function (f()) is applied to this 
linear combination of inputs to produce the 
output neuron (Oj) (see Figure 1): 

∑ += ).( liijj bxwfO  (1) 

 
 

 
Figure 1. Optimal ANN structure with a flowchart of the BP algorithm for the prediction of the remaining 

DO. 
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The output of one neuron provides the input 
to neurons in the next layer; for all data sets, 
sigmoid transfer in the hidden layer and a 
linear transfer function in the output node 
were used. The ANN was trained using back 
propagation algorithm to adjust its weights to 
present a training dataset and minimize the 
network performance function, which is 
commonly mean square error (MSE) that 
means the average squared error between the 
network output values and target values for 
these outputs, shown by Eq. 2: 

∑ −=
n

i tt
n

E
1

0
1  

(2) 

where n is the number of training data, and ti 

and to are target output and calculated output 
for training i, respectively. Once the training 
phase of the model has been successfully 
accomplished, the performance of the trained 
model has to be validated by an independent 
testing set. All calculations were carried out 
with Matlab mathematical software with 
ANN toolbox. Time, pH, glucose 
concentration, and temperature were used as 
inputs of ANN. Obtained experimental data 
were randomly split between training, 
validation, and test sets. About 70 percent of 
data were used for training, 15 percent for 
validation, and 15 percent for testing. All 
samples were normalized in the 0-1 range; 
therefore, all the data (xi) are converted to 
normalized values (xnorm) as follows [27]: 

minmax

min

xx
xxx i

norm −
−

=  
(3) 

   There is no universal method to determine 
the number of hidden neurons; a trial and 
error process was applied to identify optimum 
network. 
   In this paper, the ANN toolbox in 
MATLAB was used to compute predicting 
process. For this purpose, a network trained 

by the Levenberg-Marquardt back-
propagation algorithm was selected. LMBP 
was proved to be the most efficient training 
algorithm among all [23-29]. A nonlinear 
hyperbolic sigmoid and a linear activation 
functions were used in the hidden and output 
layers, respectively. 

3. Experimental 
3.1. Materials 
Glucoseoxidase (EC 1.1.3.4, from Aspergillus 
niger, 800 U/g) and sodium alginate were 
obtained from Sigma Aldrich. KMnO4, 
MnCl2.2H2O, β-D-glucose, calcium chloride, 
and CCl4 were purchased from Merck. 

3.2. Preparation and characterization of 
mesoporous MnO2 particle 
First, 30 ml of 1M MnCl2.2H2O solution was 
added into 80 ml CCl4; after separating 
phases and achieving obvious CCL4/H2O 
interface, 40 ml of 0.5 M KMnO4 solution 
reached the interface drop by drop. Then, the 
whole reaction system stayed in static state 
for 48 hours. During this time, the rest of the 
reactants reacted together slowly and were 
converted to brown MnO2. After collection of 
MnO2, it was washed with deionized water 
and pure ethanol for three times in order to 
eliminate impurities. Finally, MnO2 was 
heated at 150oC in air for 12 hours [8]. 
   FT-IR, SEM, and BET analyses proved the 
production of suitable MnO2 particles for 
GOD adsorption [8]. 

3.3. Preparation of GB 
Then, 1 g of prepared MnO2 was dispersed in 
20 mL of 80 U/mL GOx solution in distilled 
water and incubated at 30 oC (120 rpm). 
Immobilized enzyme was put into 1 % w/w 
sodium alginate solution and agitated for 10 
min to get uniform suspension of immobilized 
particles in sodium alginate. 
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To achieve a suitable biocatalyst for 
bioreactor usage, the supplied sodium alginate 
was put into calcium chloride 2 % w/w 
solution drop by drop through silicon tube to 
get granular biocatalysts (GB)[30]. 

3.4. Assay of GOx and GB activity 
The measurement of free GOD and granular 
biocatalyst activity was carried out by 
monitoring DO concentration decrease in 20 
mM glucose solution in an exactly filled 
stirred batch reactor at 100 rpm and during 1 
min, using DO meter sensor (Extech, DO600-
k, USA). One unit of free enzyme activity is 
the amount of enzyme which can catalyze 1 
µmol O2 per min at 25 oC, while, for granular 
biocatalyst, it is the amount that can catalyze 
0.5 µmol O2 in the same condition [8]. 

4. Results and discussion 
4.1. Mechanism of enzymatic 
deoxygenation 
Consumption of DO during oxidation of 
glucose has been defined as the enzymatic 
deoxygenation. Glucose oxidase (GOD), as 
an oxidoreductase enzyme, is used widely to 
catalyze the oxidation of β-D-glucose by 
transforming electrons to O2 and generating 
H2O2 and Gluconic-acid (Eq. 4). β-D-glucose 
is oxidized to δ-glucono-1-5-lactone which is 
hydrolyzed to D-Gluconic acid 
simultaneously [11]. 

2 2 2  D glucose O D gluconic acid H Oβ − − + → − +  (4) 

   The presence of hydrogen peroxide is 
destructive, causes more corrosion, and 
accelerates this phenomenon. Hence, 
degradation of H2O2 is done by MnO2 (Eq. 5). 

OHOOH catalyst
2222 2

1
+ →  (5) 

   In other words, MnO2 has two roles in this 
study: as enzyme support and H2O2 

scavenger. D-Gluconic acid, as another 
product of the above-mentioned reaction, has 
a passive role [31]. 

4.2. Effect of operating parameters on the 
GB activity 
In biological DO removal, operating 
parameters including temperature, pH, and 
concentration of glucose as substrate have 
significant effects. Commonly, operating 
temperature has to be chosen in a range in 
which denaturation of enzymes does not 
occur. Thus, the optimal level of temperature 
was determined (specified) by a set of 
experiments. As it is shown in Table 1, 30 ℃ 
is achieved to be the so-called optimum 
temperature, which is in agreement with 
literature [11]. 

Table 1 
Effect of temperature on deoxygenation rate in 
the batch reactor (time=10min). 
T (ᵒC) Remained DO 

(mg/L) 
Reaction rate 
(mg/L.min) 

20 0.58 0.84 
30 0.03 0.80 
40 1.11 0.63 
50 1.25 0.53 

   The other factor influencing GB activity in 
this DO removal process is the concentration 
of glucose. Therefore, a set of experiments 
was done in a batch reactor. The results are 
shown in Table 2; 80 mM glucose led to the 
highest activity of GB and the most effective 
DO removal. As for the reasons of this 
observation, low diffusion rate of substrate 
and mass transfer limitations at lower 
concentrations of glucose or production of 
inhibitor at higher concentrations could be 
proposed. The pH of the surrounding reaction 
as another influencing factor was investigated 
in experiments. It was proved that, in pH of 7, 
GB had the highest activity and could remove 
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more DO. The results are shown in Table 3. 
 

Table 2 
Effect of glucose concentration on remaining DO(mg/L) at various reaction times while 
deoxygenation is conducted in  T=30 ℃ and pH of 7. 
Time (min)  Glucose conc. (mM) 

  0.5 4 20 40 65.5 80 100 120 
0 9 9 9 9 9 9 9 9 
1 8.5 8.43 7.61 7.4 7.23 6.73 6.62 6.4 
2 8.49 8.19 6.67 6.64 6.1 5.26 5.69 5.37 
3 8.47 7.9 5.8 5.53 4.85 3.87 4.7 4.6 
4 8.43 7.58 5.04 4.95 3.6 2.92 3.95 3.95 
5 8.39 7.28 4.39 4.03 2.7 2.07 3.32 3.38 
6 8.33 6.94 3.74 3.28 2.06 1.44 2.8 2.93 
7 8.25 6.61 3.23 2.83 1.45 1.01 2.36 2.5 
8 8.18 6.3 2.72 2.36 1.02 0.7 1.92 2.13 
9 8.09 5.98 2.27 1.97 0.78 0.51 1.64 1.8 

10 7.91 5.7 1.9 1.63 0.58 0.43 1.36 1.55 
 
 

Table 3 
Effect of pH on remaining Do(mg/L) at various reaction times while deoxygenation is 
conducted in T=30 ℃ and [G]=80 mM. 

Time (min)  pH 
  4 5 7 9 10 

0 8.80 8.80 8.80 8.80 8.80 
1 8.60 7.87 7.23 7.63 8.11 
2 8.41 6.94 6.1 6.87 7.68 
3 8.28 5.96 4.85 6.16 7.33 
4 8.05 5.03 3.60 5.61 7.00 
5 7.79 4.13 2.7 5.09 6.68 
6 7.45 3.33 2.06 4.64 6.43 
7 7.01 2.63 1.45 4.20 6.19 
8 6.54 2.02 1.02 3.78 5.88 
9 6.23 1.59 0.78 3.45 5.66 
10 5.58 1.28 0.58 3.15 5.45 

 

4.3. ANN modelling 
The input values of feed-forward neural 
network include temperature (over 20-50 oC 
range), duration of deoxygenation (over 0-10 
min), concentration of glucose (over 0.5-120 
mM range), and pH (over 4-10 range). The 

remaining DO concentration was defined as 
experimental response or output target, which 
was between 0-9 mg/L. After normalization 
of all input data in the range of 0-1, they were 
introduced into ANN. The dataset was 
divided into three subsets: training, cross-
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validation, and testing including 70 %, 15 %, 
and 15 % of the all data, respectively. Each 
subset has certain effect on the training 
procedure of the network. The training subset 
is used to generate errors during the training 
process and, then, update the weights. The 
cross-validation subset ensures that the 
network does not become over-trained. The 
training stops when the mean square error 
(MSE) in the cross-validation set starts to 
increase. The test subset, which remains 
unused during the training, is utilized after the 
training to examine the generalization 
capabilities of the network and to compare 
with the other errors (training error and cross-
validation error) [24]. Then, ANN topology, 
including specification of number of neurons 
in hidden layer, was optimized according to 
minimum prediction error of the neural 
network. Therefore, to determine the 
optimum number of hidden nodes, different 
topologies were examined in which the 
number of neurons varied from 2 to 10. 
Because of the effect of weights and biased 
initial guessing on network output, it is 
advisable to generate several neural networks 
meeting the criteria. Therefore, each topology 
is repeated 5 times. Figure 2 illustrates the 

MSE as a performance function of network 
(Eq. 2) versus number of neurons in hidden 
layer. 

 

Figure 2. Variation of MSE versus number of 
neurons in hidden layer. 

   When there are 7 neurons in the hidden 
layer, it is clear that the minimum network 
square error occurs. Therefore, a three-layer 
feed-forward back-propagation neural 
network with 7 nodes in hidden layer was 
generated. The input layer weights (ILW), 
input layer biases (ILB), hidden layer weights 
(HLW), and hidden layer biases (HLB) of 
obtained optimum model are given in Tables 
4 and 5, respectively. 

 

Table 4 
Matrix of weights between input and hidden layers in optimized ANN model. 

Neuron N1 N2 N3 N4 N5 N6 N7 
Weight of connections from time 0.192 -0.006 -0.759 0.163 0.424 -0.219 -0.325 

Weight of connections from glucose 
concentration 

-1.090 0.319 -0.127 -0.588 0.491 1.942 0.750 

Weight of connections from pH -0.974 -0.114 -0.290 0.002 1.046 -1.670 1.302 

Weight of connections from T 0.544 1.453 0.164 0.215 -0.227 -0.627 0.001 
Bias in hidden layer 0.508 -2.959 -0.264 -0.309 0.521 0.298 -1.639 

 
 

Table 5 
Matrix of weights between hidden and output layers. 

Neuron N1 N2 N3 N4 N5 N6 N7 

Weights -7.375 -7.119 -1.798 18.246 -7.585 4.871 5.945 
Bias in output layer 7.099       
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The obtained network was evaluated by 
comparing it with an independent 
experimental data set (test set). Figure 3 
indicates the experimental results (test set) 
versus predicted outputs in corresponding 
points. As is clear, the dataset is distributed 
around X=Y line in a narrow area, and R2 
(correlation coefficient) is 0.995. Therefore, 
there is excellent agreement between the 
neural network and experimental data. 
   Hence, this model could be quite accurate 

and reliable in predicting the amount of DO 
removal by the enzymatic process. The 
effects of simultaneous variation of 
temperature-time, pH-time, and glucose 
concentration-time are shown in Figures 4-6. 
In each figure, two variations out of four are 
constant. The shown contour maps determine 
the point at which DO removal is in optimum 
state. These maps confirm the reliability of 
the obtained neural network. 

 

Figure 3. Predicted remained DO(mg/L) versus experimental data. 

 

Figure 4. Impact of temperature and time on remaining DO(mg/L) estimated with ANN model. 
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Figure 5. Impact of glucose concentration and time on remaining DO(mg/L) estimated with ANN model. 

 

Figure 6. Impact of pH and time on remaining DO(mg/L) estimated with ANN model. 
 

5. Conclusions 
Enzymatic granular biocatalyst (GB) based on 
Glucoseoxidase/calcium alginate was 
synthesized successfully and was used for 
dissolved oxygen removal of water. The 
effect of various operational parameters on 
dissolved oxygen removal was investigated 
and optimized. According to the dissolved 
oxygen removal experiments in stirring batch 
reactor, optimal operating temperature, initial 

glucose concentration, and initial pH were 
determined to be 30 oC, 80 Mm, and 7, 
respectively, causing the oxygen dissolved in 
water to become zero. Based on batch 
dissolved oxygen removal tests, an important 
purpose was to obtain an artificial neural 
network model as an applicable mathematical 
model to make a reliable prediction about 
dissolved oxygen removal with granular 
biocatalyst. A three-layer artificial neural 
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network with a tangent sigmoid transfer 
function (tansig) at a hidden layer and a linear 
transfer function (purelin) at output layer was 
proposed to predict the remaining dissolved 
oxygen after removal. Back-propagation 
algorithm was used and the optimal neuron 
number of 7 was determined at hidden layer 
with MSE of 0.036. Accordingly,  
considering seven neurons in the hidden 
layer, the difference of modelled dissolved 
oxygen from those achieved in experiments 
reaches the minimum amount, which is 0.036. 
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Nomenclature 
Abbreviation 
DO dissolved oxygen [ppm]. 
GOD glucose oxidase. 
ANN artificial neural network. 
GB granular biocatalyst. 
MSE mean square error. 
ILW input layer weights. 
ILB input layer bias. 
HLW hidden layer weight. 
HLB hidden layer bias. 
FT-IR Fourier transform spectroscopy. 
BET Brunauer Emmett-teller. 
SEM scanning electron microscopy. 
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