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 In the present study, Adaptive Neuro-Fuzzy Inference System (ANFIS) 
approach was applied for predicting the heat transfer and air flow 
pressure drop on flat and discontinuous fins. The heat transfer and 
friction characteristics were experimentally investigated in four flat 
and discontinuous fins with different geometric parameters including 
fin length (r), fin interruption (s), fin pitch (p), and fin thickness (t). 
Two ANFIS models were developed using the Computational Fluid 
Dynamic (CFD) results, as validated by the experimental data. The 
ANFIS models were applied for prediction of Nusselt number (Nu) and 
friction factor (f) as functions of Reynolds number (Re) and fin 
geometric parameters including span-wise spacing ratio (p/t) and 
stream wise spacing ratio (s/r). The low error values for testing data 
set, which were not employed in the training of the ANFIS, proved the 
precision and validity of the model. The root mean square error 
(RMSE) of 0.7343 and mean relative error (MRE) of 1.33 % were 
obtained for Nu prediction. In addition, these values for the estimation 
of f were obtained as 0.0158, 3.32 %, respectively. 
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1. Introduction 
The advantages of the fins such as the large 
heat transfer area and high thermal 
performance have led to a great deal of 
research. The numerical and experimental 
studies of thermal and fluid flow 
characteristics of the various fins such as 
plain [1–3], pin [4–6], offset strip [7, 8], wavy 
[9, 10], and perforated [11] have been 
performed in the literature. Due to the 
influence of the fins geometric parameters on 
thermal-hydraulic performance, it is very 
useful to propose accurate numerical models 
for predicting heat transfer and flow 

characteristics. The accurate and reliable 
predictive models can be used for designing 
and optimizing the thermal systems. 
   The CFD analysis of the effects of the plain 
and pin fin geometries was performed by 
Diani et al. [2]. The investigated geometrical 
parameters include fin height, fin thickness, 
and fin pitch. The model validation was 
confirmed by the experimental measurements 
of a reference trapezoidal finned surface. Mon 
and Gross [12] numerically investigated the 
influence of fin spacing in annular-finned 
tube bundles for staggered and in-line 
arrangements on thermal performance. The 
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research results indicated that the fin spacing 
and Reynolds number influenced the 
development of the boundary layers. Rao et 
al. [4] experimentally and numerically 
investigated the thermal-hydraulic behavior of 
pin fin-dimple and pin fin channels. The heat 
transfer coefficients and flow pressure drop of 
the two cases were analyzed. The higher heat 
transfer coefficients around 8 % and lower 
friction characteristic around 18 % were 
obtained for a pin fin-dimple channel. The 
CFD modeling shows that the dimples 
increase the turbulent intensity close to the 
wall by producing strong vortex flows and 
cause the enhancement of heat transfer 
coefficient. A numerical investigation for 
optimizing the geometric parameters of the 
heat sinks with micro square pin fin was 
performed by Zhao et al. [6]. The optimized 
geometries of the micro square pin fins 
including fin porosity and fin located angle 
were presented for enhancing the cooling 
performance. 
   The Artificial Intelligence (AI) approaches 
including Artificial Neural Network (ANN), 
Adaptive Neuro-Fuzzy Inference System 
(ANFIS), and Genetic Algorithm (GA) are 
useful approaches for the modeling, 
prediction, and optimization of the thermal-
hydraulic characteristics in thermal systems. 
Bar et al. [13] investigated the application of 
ANN modeling for predicting the frictional 
pressure drop in orifices, different valves, and 
elbows for non-Newtonian liquid flow. The 
application of ANN- and GA-based 
correlations to estimate thermal-hydraulic 
performance in serpentine microchannels was 
investigated by Rahimi et al. [14]. The results 
showed that the ANN could predict target 
data more accurate than the GA-based 
correlations. Momayez et al. [15] proposed 
correlations in the form of the classical power 

law for predicting the heat transfer 
characteristics for concave surfaces such as 
pressure side of the gas turbine blade. The 
constants of the developed correlations were 
obtained using the genetic algorithm 
approach. 
   The present study aims to investigate the 
ability of the ANFIS in predicting the thermal 
and fluid flow characteristics in flat and 
discontinuous fins. The heat transfer and 
pressure drop of the air flowing on surfaces 
equipped with interrupted rectangular fins 
were measured experimentally. The various 
geometry fins were applied to the 
experimental work. The CFD technique was 
applied to simulate the studied fins and, then, 
the numerical data were validated by the 
experimentally obtained results. For reducing 
the experimental effort, the valid numerical 
approach was used for providing the adequate 
numerical-validated data (CFD data) to 
develop ANFIS models. Two adaptive neuro-
fuzzy models were trained for estimating the 
target data as functions of input values. In the 
research, target data include the Nusselt 
number (Nu) and friction factor (f); input data 
are fin geometrical parameters (p/t and s/r) 
and Reynolds number (Re). 

2. Experimental setup 
The experiments were performed in the 
experimental setup, as schematically 
illustrated in Fig. 1. The experimental facility 
consists of an adjustable speed blower, two 
pressure transducers, an air flow meter, 
temperature measuring devices, and a test 
section. The air flow speed driven into the 
wind tunnel was measured by means of the 
hot wire anemometer ST-8880. 
   The wind tunnel has a rectangular cross-
section and includes three parts test channel 
(in the middle of the tunnel) with dimensions 
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of 30×40×500 mm and two channels in the 
entrance and output of the tunnel with 
dimensions of 80×80×250 mm. In order to 
provide a suitable thermal insulation, the 
channel walls were made of medium-density 
fibreboard with 1.6 cm thickness. Four fins 
with various geometries including fin length 
(r), fin interruption (s), fin pitch (p), and fin 
thickness (t) were investigated 
experimentally. Table 1 reports the details of 
the fin dimensions. A real photo of a flat and 
discontinuous fin (layout number 2) and its 
main geometrical parameters is shown in Fig. 
2. For the aluminum fins, N is considered as 
the number of arrays in spanwise and M is the 
number of arrays in streamwise direction (see 
Table 1). The base of the fins was heated by a 

plate-type heater, which was linked to an AC 
power supply. Two thermocouples (K-type) 
with the accuracy of 0.05 K were used for 
measuring the fin base temperature. Two 
holes were drilled at the inlet and outlet of the 
fin base for inserting the thermocouples. The 
effect of the fluid flow rate was investigated 
by six blower rotation speeds. A cover plate 
was carefully installed above the fin arrays 
and was flushed with the bottom wall of the 
channel. Two pressure transducers were 
placed at the upstream and downstream of the 
plate fins measured the pressure drops. The 
temperatures of the inlet and outlet of the test 
channel were measured using two K-type 
thermocouples. 

Figure 1. The experimental setup. 
 
 

Table 1 
Details of the fins used in the experiments (dimensions are in millimeters). 
Layout number N M W L H t p s r b 

1 7 6 37.7 41 26 1.1 6.1 7 6 1.5 
2 8 4 36 38 20 1 5 10 8 3 
3 9 8 37.5 38 22 1.5 4.5 5 3 2 
4 10 6 35 40 27 1.1 3.7 7 5 3 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The flat and discontinuous fin (layout number 2) and main geometric parameters. 
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The imposed heat flux from the base of the 
heat sink to the air flow is calculated as 
follows: 

 (1) 

where M is the air mass flow rate, Cp,Air is the 
specific heat capacity of air, TAir,Out and TAir,In 

are the outlet and inlet bulk temperatures of 
the air flow, respectively. The heat transfer 
rate to the fluid flow was obtained as follows: 

lmtot ΔTAhQ =  (2) 

where h is the average heat transfer 
coefficient, and Atot is the finned surface total 
area for the convective heat transfer. The 
logarithmic mean temperature difference 
between the wall and the working fluid can be 
found according to the following equation: 
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in which TW,Out and TW,In are the temperatures 
at the outlet and inlet parts of the fin base, 
respectively. The heat transfer coefficients 
and the Nusselt numbers were obtained 
through the following relations: 

 
(4) 
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where kAir is the thermal conductivity of air, 
and Dh is the hydraulic diameter. The 
Reynolds number is calculated as follows: 

Air

hAir

μ
Duρ maxRe =  

(6) 

in which ρAir is the air density, μAir is the air 

dynamic viscosity, and umax is the maximum 
velocity of the fluid occurring within the 
plate-fin array. The friction factor can be 
obtained according to the following relation: 

Lu
DPf
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h
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2
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(7) 

in which ΔP is the pressure drop across the 
flat and discontinuous fins, and L is the length 
of the plate fin. In this investigation, the 
uncertainty analysis of the reduced data was 
performed using the procedure presented by 
Holman [16]. The uncertainties about 3.8 %, 
5.1 %, and 5 % were calculated for Re, Nu, 
and f, respectively. 

3. Modeling study 
The three-dimensional numerical modeling by 
means of the commercial CFD code, 
FLUENT, was used for simulating the 
experimentally investigated fins (reported in 
Table 1). The CFD modeling approach leads 
to an alternative for decreasing the 
experimental efforts. The CFD results were 
validated by the experimental data, which 
were previously obtained. After proving the 
validity of the model, the computational fluid 
dynamic technique was applied for modeling 
fins with different geometries. Table 2 lists 
the details of the dimensions of the flat and 
discontinuous fins, which were studied by the 
CFD technique. All fins are considered with 
the same similar dimensions such as a width 
of 40, a length of 40, a fin height of 20, and a 
base height of 2.5 mm. 
   Due to the symmetry of the investigated 
system, a single channel of the fined surfaces 
was simulated to decrease the computation 
effort. The computational domain and details 
of the boundary conditions are shown in Fig. 
3. The three-dimensional geometries of the 
flat and discontinuous fins were created using 

)T(TMCQ Air,InAir,Outp.Air −=
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the commercial software GAMBIT 2.2. The 
computational fluid domain begins 20 mm 
(L/2) before the solid domain and extends 20 
mm from the solid domain. The boundary 
conditions of the no-slip were employed for 
the interfaces of solid and fluid, as well as for 
top domain and bottom duct of the fluid 
domain at the input and output. The fluid 
domain inlet and outlets are treated as velocity-
inlet (with a temperature of 25 °C) and 

pressure-outlet boundary conditions, 
respectively. The results indicate that, for 
more than approximately 400,000 tetrahedral 
cells, no more significant change occurs for 
the obtained values. The areas near the fluid 
and solid interface were meshed by finer 
meshes to achieve more precise estimation 
results. A typically mesh for the finned 
surface is shown in Fig. 3. 

 
Table 2 
Details of the flat and discontinuous fins used for modeling (dimensions are in millimeters). 

Case number N M t p r s 
1 5 5 1 8 3 9.25 
2 5 5 2 8 3 9.25 
3 5 5 3 8 3 9.25 
4 5 5 4 8 3 9.25 
5 6 6 1 6.67 3 7.4 
6 6 6 2 6.67 3 7.4 
7 6 6 3 6.67 3 7.4 
8 6 6 4 6.67 3 7.4 
9 7 7 1 5.71 3 6.17 

10 7 7 2 5.71 3 6.17 
11 7 7 3 5.71 3 6.17 
12 7 7 4 5.71 3 6.17 
13 8 8 1 5 3 5.29 
14 8 8 2 5 3 5.29 
15 8 8 3 5 3 5.29 
16 8 8 4 5 3 5.29 
17 7 7 2 5.71 2 6.33 
18 7 7 2 5.71 4 6 
19 7 7 2 5.71 5 5.83 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The numerical mesh of the flat and discontinuous fin and boundary conditions. 
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In the present work, the realizable k-ε 
turbulence model [17] was applied to model 
the turbulent regime in the flat and 
discontinuous fins. The model-related 
equations for the extended surfaces are 
presented in references [2, 4]. For the 
pressure–velocity coupling, the SIMPLE 
algorithm was selected and, for the 
momentum, energy, turbulent kinetic energy 
and dissipation energy, the second-order 
volume discretization scheme was used. The 
minimum convergence criterion was 
considered (10-4) for all calculation 
parameters, excluding the energy equation 
where (10-7) was employed. 

3.1. ANFIS modeling 
The ANN does not include explicit 
information or causal relation for a system, 
and it can be treated as a major drawback of 
the neural network [18]. The combination of 
neural network and fuzzy system leads to the 
development of a model that shares the ability 
of both systems. This model was proposed by 
Jang [19] and was called Adaptive Neuro-
Fuzzy Inference System (ANFIS). The 
ANFIS has adjustable components such as 
fuzzy rules and membership functions. 
   The fuzzy rules of a Sugeno fuzzy inference 
system with two inputs (x and y) and one 
output (F) are defined as in the following 
relations: 

Rule 1: If (x is A1) and (y is B1), then 
F1=p1x+q1y+r1 

(8) 

  
Rule 2: If (x is A2) and (y is B2), then 
F2=p2x+q2y+r2 

(9) 

in which pi, qi, and ri are adjustable 
parameters and found using the training 
procedure. Ai and Bi are fuzzy sets, and Fi is 
the output of the system. The ANFIS 
architecture comprises five consecutive layers 

including fuzzy, product, normalized, 
defuzzy, and total output layers. The premise 
and consequent parameters of the ANFIS 
model were obtained by the training 
procedure. The consequent and premise 
parameters of the ANFIS were optimized in 
two passes. The consequent parameters are 
calculated by the least square evaluation in 
forward pass, and the premise parameters are 
adjusted by the gradient descend in backward 
[20]. The grid partition technique was 
employed to determine the optimum 
configuration of the ANFIS model. The types 
of the MFs and number of the rules can be 
chosen through the trial-anderror technique. 
   According to the flexibility of the ANFIS 
architecture and parameters, the model can be 
applied to predict desired values in nonlinear 
and complicated functions. In this study, the 
ANFIS model was developed to predict Nu 
and f in the investigated interrupted plate fins. 
The CFD modeling was employed to gather 
further data for training the ANFIS. The 
CFD-validated-data of the flat and 
discontinuous fins were applied to train and 
test the ANFIS models. In the modeling 
procedure, the Nusselt number and friction 
factor are the output (target) values; spanwise 
spacing ratio (p/t), streamwise spacing ratio, 
(s/r), and Reynolds number (Re) are input 
parameters. For enhancing the rate of 
computational process, all input and output 
data (Xi) were normalized (Yi) in the range of 
0 to 1 as follows: 

)X(X
)X(XY

minmax

mini
i −

−
=

 

(10) 

in which Xmax and Xmin are the extreme values 
of variable Xi. 

4. Results and discussion 
The experimental setup was provided to study 
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the four flat and discontinuous fins with 
various geometric parameters. The fins were 
modeled using the CFD method, and the 
modeling results were compared with the 
experimental data of the investigated fins in 
Fig. 4. The experimental results were 
determined at six air frontal velocity, as 
generated by six-blower rotation speed. The 
comparison between the experimental and 
CFD data indicates the validity of the CFD 
modeling technique. Therefore, the simulation 
results for more fins with a larger range of the 
effective variables can be applied as input 
data of the ANFIS modeling. Fig. 5 shows a 
comparison between tangential velocity 
vectors in plain and interrupted plate fins with 
different geometrical parameters. In the 

figure, velocity vectors are illustrated in a 
horizontal slice that goes through a finned 
surface at H=10 mm. The velocity vectors 
show that, in the flat and discontinuous fins, 
the air flow trends to move from a tortuous 
path. This phenomenon leads to the higher 
heat transfer coefficients. The change in the 
geometry of the interrupted plate fin leads to a 
change in its thermal and flow behaviors. 
Providing an accurate predictive model for 
heat transfer rate and pressure drop can be 
useful in the design of the fined surfaces. As 
far as the effects of the fin geometries on heat 
transfer and pressure drop in the fins are quite 
complicated, two ANFIS models were 
developed for estimating Nu and f in them. 

 

  
Figure 4. The comparison between experimental and CFD modeling results. 

 

   The function of root mean square error 
(RMSE) was used to find the best ANFIS 
structure. Moreover, mean relative errors 
(MRE) function was employed to evaluate the 
model precision. 
   The CFD modeling results of the fins with 
different geometric parameters (reported in 
Table 2) are used for ANFIS training. A total 
of 133 numerical-validated data of Nu and f 
within a Reynolds number ranging from 1117 
to 12758 were used for developing the 
ANFIS. The data points were randomly 

divided into two subgroups: the first data 
group (two-third of all of the dataset of Nu 
and f) was used to train the networks, and the 
second data group (remaining data) was 
considered to validate the ANFIS models. 
   The ANFIS performance by using different 
membership function (MF) types was 
investigated. The trial-and-error method was 
employed to determine the optimum number 
of rules, as well as types of the MFs in the 
ANFIS structure. The MFs such as those with 
forms of triangular, trapezoidal, Generalized 
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bell, Gaussian, Gaussian mixture, and Π–
shaped were examined. The ANFIS with 2, 4, 
and 4 MFs for the first, second, and third 
input variables, respectively, has minimum 
testing RMSE (0.7349). In addition, the 
application of the combination Gaussian 
membership function leads to the best 
prediction result. Input variables were 
fuzzified using the membership functions, 

named as MF1 to MF4 in Table 3. The related 
parameters of the MFs are listed in the table, 
in which sig1, c1, sig2, and c2 are the 
combined Gaussian MF parameters [21]. The 
fuzzy rules of the best first-order Sugeno 
inference model and optimal consequent 
parameters for Nu modeling are listed in 
Table 4. 

 
 

(a) 
 

 
(b) 
p/t = 2.86, s/r = 1.50 

 
 

 
 
p/t = 2.86, s/r = 2.06 

 
 
 
 
p/t = 1.90, s/r = 2.06 

 
Figure 5. The tangential velocity vectors in top view of (a) plain fin, and (b) interrupted plate fins with 

different geometries. 
 

Table 3 
Parameters of membership functions for Nu modeling. 

MF function Parameters Input 1, Re Input 2, p/t Input 3, s/r 
MF1 sig1 0.1699 0.05662 0.05662 

 c1 -0.3 -0.1 -0.1 
 sig2 0.1956 0.04903 0.1327 
 c2 0.1075 0.02513 0.152 

MF2 sig1 0.1466 0.07827 0.05685 
 c1 0.4704 0.1803 0.2333 
 sig2 0.1699 0.04282 0.05613 
 c2 1.3 0.4278 0.4309 

MF3 sig1 - 0.1055 0.07819 
 c1 - 0.5293 0.5477 
 sig2 - 0.04863 0.05194 
 c2 - 0.7563 0.7654 

MF4 sig1 - 0.0775 0.05671 
 c1 - 0.885 0.9 
 sig2 - 0.0566 0.05662 
 c2 - 1.1 1.1 
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Table 4 
Fuzzy rules of the optimum ANFIS structure for prediction of Nu. 
Rule number Rule description 

1 
If (Re is Re MF1) and (p/t is p/t MF1) and (s/r is s/r MF1) then 

(Nu=0.818×Re-0.01115×p/t-0.00464×s/r-0.02114) 

2 
If (Re is Re MF1) and (p/t is p/t MF1) and (s/r is s/r MF2) then 

(Nu=-0.1001×Re-0.128×p/t+0.03762×s/r+0.06507) 

3 
If (Re is Re MF1) and (p/t is p/t MF1) and (s/r is s/r MF3) 
then (Nu=0.7896×Re-0.0551×p/t+0.03079×s/r+0.06413) 

4 
If (Re is Re MF1) and (p/t is p/t MF1) and (s/r is s/r MF4) then 

(Nu=0.08731×Re-0.001858×p/t-0.03901s/r-0.04057) 

5 
If (Re is Re MF1) and (p/t is p/t MF2) and (s/r is s/r MF1) then 

(Nu=0.484×Re+0.001426×p/t+0.1463×s/r-0.001394) 

6 
If (Re is Re MF1) and (p/t is p/t MF2) and (s/r is s/r MF2) then 

(Nu=0.5535×Re+0.342×p/t-0.1198×s/r+0.1114) 

7 
If (Re is Re MF1) and (p/t is p/t MF2) and (s/r is s/r MF3) then 

(Nu=0.5205×Re+0.2158×p/t+0.1407×s/r+0.06005) 

8 
If (Re is Re MF1) and (p/t is p/t MF2) and (s/r is s/r MF4) then 

(Nu=0.4588×Re-0.5285×p/t-0.6256×s/r+0.9781) 

9 
If (Re is Re MF1) and (p/t is p/t MF3) and (s/r is s/r MF1) then 

(Nu=0.5747×Re+0.05059×p/t+0.02955×s/r+0.09005) 

10 
If (Re is Re MF1) and (p/t is p/t MF3) and (s/r is s/r MF2) then 

(Nu=0.9806×Re+0.0473×p/t+0.02884×s/r+0.13) 

11 
If (Re is Re MF1) and (p/t is p/t MF3) and (s/r is s/r MF3) then 

(Nu=0.3688×Re+0.0968×p/t+0.1105×s/r+0.1608) 

12 
If (Re is Re MF1) and (p/t is p/t MF3) and (s/r is s/r MF4) then 

(Nu=0.3549×Re+0.1937×p/t+0.2685×s/r+0.1361) 

13 
If (Re is Re MF1) and (p/t is p/t MF4) and (s/r is s/r MF1) then 
(Nu=0.0001031×Re-8.311×10-6×p/t+4.472×10-6×s/r-3.2×10-5) 

14 
If (Re is Re MF1) and (p/t is p/t MF4) and (s/r is s/r MF2) then 
(Nu=-0.009956×Re-0.0009904×p/t-0.0006617×s/r-0.001507) 

15 
If (Re is Re MF1) and (p/t is p/t MF4) and (s/r is s/r MF3) then 

(Nu=1.228×Re+0.09175×p/t+0.07441×s/r+0.1142) 

16 
If (Re is Re MF1) and (p/t is p/t MF4) and (s/r is s/r MF4) then 

(Nu=0.3188×Re+0.1478×p/t+0.1416×s/r+0.1478) 

17 
If (Re is Re MF2) and (p/t is p/t MF1) and (s/r is s/r MF1) then 

(Nu=0.7022×Re-0.01512×p/t-0.0343×s/r-0.1307) 

18 
If (Re is Re MF2) and (p/t is p/t MF1) and (s/r is s/r MF2) then 

(Nu=0.1895×Re-0.1734×p/t+0.06919×s/r+0.05741) 

19 
If (Re is Re MF2) and (p/t is p/t MF1) and (s/r is s/r MF3) then 

(Nu=0.6297×Re-0.08706×p/t-0.04673×s/r-0.02421) 

20 
If (Re is Re MF2) and (p/t is p/t MF1) and (s/r is s/r MF4) then 

(Nu=0.2606×Re-0.02497×p/t-0.2885×s/r+0.3006) 

21 
If (Re is Re MF2) and (p/t is p/t MF2) and (s/r is s/r MF1) then 

(Nu=0.7866×Re-0.03845×p/t+0.196×s/r-0.1827) 

22 
If (Re is Re MF2) and (p/t is p/t MF2) and (s/r is s/r MF2) then 

(Nu=0.2758×Re+0.4734×p/t-0.1628×s/r+0.1445) 

23 
If (Re is Re MF2) and (p/t is p/t MF2) and (s/r is s/r MF3) then 

(Nu=0.2894×Re+0.3307×p/t+0.2093×s/r+0.07956) 

24 
If (Re is Re MF2) and (p/t is p/t MF2) and (s/r is s/r MF4) then 

(Nu=0.2863×Re-1.809×p/t-2.175×s/r+2.898) 

25 
If (Re is Re MF2) and (p/t is p/t MF3) and (s/r is s/r MF1) then 

(Nu=0.9266×Re+0.05009×p/t+0.03099×s/r+0.08608) 
26 If (Re is Re MF2) and (p/t is p/t MF3) and (s/r is s/r MF2) then 
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(Nu=0.2777×Re+0.05337×p/t+0.03735×s/r+0.1507) 

27 
If (Re is Re MF2) and (p/t is p/t MF3) and (s/r is s/r MF3) then 

(Nu=0.7074×Re+0.1539×p/t+0.1743×s/r+0.2602) 

28 
If (Re is Re MF2) and (p/t is p/t MF3) and (s/r is s/r MF4) then 

(Nu=0.4573×Re+0.4612×p/t+0.4969×s/r+0.6323) 

29 
If (Re is Re MF2) and (p/t is p/t MF4) and (s/r is s/r MF1) then 
(Nu=0.000535×Re+2.582×10-5×p/t+3.2×10-5×s/r+1.08×10-5) 

30 
If (Re is Re MF2) and (p/t is p/t MF4) and (s/r is s/r MF2) then 
(Nu=0.003544×Re-0.0009628×p/t-0.0006406×s/r-0.001471) 

31 
If (Re is Re MF2) and (p/t is p/t MF4) and (s/r is s/r MF3) then 

(Nu=0.1135×Re+0.1301×p/t+0.1055×s/r+0.162) 

32 
If (Re is Re MF2) and (p/t is p/t MF4) and (s/r is s/r MF4) then 

(Nu=0.356×Re+0.2209×p/t+0.2117×s/r+0.2209) 
 

Moreover, the ANFIS with a structure of 
2/2/2 and 8 fuzzy rules leads to the lowest 
RMSE for predicting f on the investigated 
fined surfaces. The results show that the 
models with more MFs and fuzzy rules 
resulted in complex networks and lower 
prediction accuracy. The selected model 

configuration has trapezoidal MFs. Table 5 
reports the parameters of the input fuzzy sets 
in which a, b, and c are the trapezoidal MF 
parameters [21]. The 8 fuzzy rules of the 
ANFIS, developed for predicting the friction 
factor, are listed in Table 6. 

 

Table 5 
Parameters of the membership functions for f modeling. 
Membership function Parameters Input 1, Re Input 2, p/t Input 3, s/r 

MF1 a -1 -1 -1 
 b -0.02003 -0.009301 -0.007811 
 c 1.017 1.009 1.02 

MF2 a 0.04807 0.04092 0.06756 
 b 0.9794 0.9903 0.9791 
 c 2 2 2 

 
Table 6 
Fuzzy rules of the optimum ANFIS structure for predicting f. 
Rule number Rule description 

1 
If (Re is Re MF1) and (p/t is p/t MF1) and (s/r is s/r MF1) then 

(Nu=-0.4072×Re-9.039×p/t+1.444×s/r+0.5582) 

2 
If (Re is Re MF1) and (p/t is p/t MF1) and (s/r is s/r MF2) then 

(Nu=-11.67×Re+1.379×p/t+1.384×s/r+0.281) 

3 
If (Re is Re MF1) and (p/t is p/t MF2) and (s/r is s/r MF1) then 

(Nu=-4.985×Re-8.665×p/t+1.22×s/r+8.646) 

4 
If (Re is Re MF1) and (p/t is p/t MF2) and (s/r is s/r MF2) then 

(Nu=-6.734×Re+1.532×p/t-0.1737×s/r-0.1776) 

5 
If (Re is Re MF2) and (p/t is p/t MF1) and (s/r is s/r MF1) then 

(Nu=0.5216×Re-6.137×p/t-5.241×s/r+0.2273) 

6 
If (Re is Re MF2) and (p/t is p/t MF1) and (s/r is s/r MF2) then 

(Nu=-10.04×Re-1.353×p/t-5.173×s/r+16.35) 

7 
If (Re is Re MF2) and (p/t is p/t MF2) and (s/r is s/r MF1) then 

(Nu=-2.237×Re-4.349×p/t-0.5319×s/r+8.623) 

8 
If (Re is Re MF2) and (p/t is p/t MF2) and (s/r is s/r MF2) then 

(Nu=-5.768×Re-1.025×p/t+0.5234×s/r+6.737) 
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Fig. 6 indicates the comparison between the 
numerical-validated values obtained from 
CFD modeling and the predicted results from 
the developed ANFIS models. The solid line 
shows the perfect fit (predicted equal target 
value). The figure illustrates that the ANFIS-
predicted values for all data points are quite 

close to the CFD-validated data. The 
investigated data are in testing data set for Nu 
and f modeling. The calculated MRE values 
of 1.33 % and 3.32 % for prediction of Nu 
and f, respectively, indicate the validation of 
the neuro-fuzzy models. 

 

  

Figure 6. The evaluation of the ANFIS accuracy for prediction of (a) Nusselt number and (b) friction 
factor. 

 

5. Conclusions 
This study attempted to introduce the 
precision of Adaptive Neuro-Fuzzy Inference 
System (ANFIS) for evaluating the thermal 
and friction characteristics of air convection 
on flat and discontinuous fins. For avoiding 
experimental effort, the numerical-validated 
data obtained from the CFD modeling were 
used for training the ANFIS. Two Neuro-
Fuzzy models were proposed to estimate Nu 
and f as functions of spanwise spacing ratio, 
streamwise spacing ratio, and Reynolds 
number. The grid partition method was used 
for developing the ANFIS structure. The high 
precision of the models for prediction of the 
test data group (which was not introduced to 
the ANFIS before training) indicates the 
validity of the techniques. 
 

Nomenclature 
Atot total heat transfer area [m2]. 
b height of the base plate [m]. 
Cp specific heat capacity [kJ/kg K]. 

Dh hydraulic diameter [m]. 

h heat transfer coefficient [W/m2 
K]. 

H fin height [m]. 
f friction factor. 

k thermal conductivity [W/m K]. 

L length of the finned surface [m]. 

Nu Nusselt number. 
p fin pitch [m]. 
Q heat transfer rate [W]. 
Re Reynolds number. 
r fin length [m]. 
s fin interruption [m]. 
T temperature [K]. 
t fin thickness [m]. 
∆P pressure drop [Pa]. 
u velocity [m/s]. 
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W width of the finned surface [m]. 
Greek letters 
µ dynamic viscosity [Pa s]. 
ρ density [kg/m3]. 
Subscripts 
In inlet. 

lm logarithmic mean. 

min minimum. 

max maximum. 
Out outlet. 
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