Reaction Engineering, Kinetics and Catalysts,
I. Khosrozadeh; M.R. Talaghat; A.A. Roosta
Volume 15, Issue 2 , May 2018, , Pages 52-64
Abstract
Catalytic naphtha reforming is one of the most important processes in which, low quality naphtha is converted into high octane motor gasoline. In this study, a mathematical model was developed and was used for investigation the effect of temperature, pressure, hydrogen to hydrocarbon ratio on the octane ...
Read More
Catalytic naphtha reforming is one of the most important processes in which, low quality naphtha is converted into high octane motor gasoline. In this study, a mathematical model was developed and was used for investigation the effect of temperature, pressure, hydrogen to hydrocarbon ratio on the octane number, the yield of product and the undesirable phenomena of coke deposition in a semiregenerative catalytic reforming unit. The result of the model was compared to the plant data to verify the model accuracy. Then, the model was used to find the optimal condition for the maximum value of octane number and yield of product and the minimum value of coke deposition. The optimum condition of the process is estimated using genetic algorithm optimization method as an efficient optimization method. In the optimal condition, the octane number and the yield of the product are improved 0.3% and 1.23% respectively, and the coke deposition is reduced 2.1 %.
Modeling and Simulation
Malihe Heravi; Mahdi Bayat; Mohammad Reza Rahimpour
Volume 13, Issue 4 , November 2016, , Pages 71-95
Abstract
The main focus of this study is improvement of the steam-methane reforming (SMR) process by in-situ CO2 removal to produce high hydrogen content synthesis gas. Sorption-enhanced (SE) concept is applied to improve process performance. In the proposed structure, the solid phase CO2 adsorbents and pre-reformed ...
Read More
The main focus of this study is improvement of the steam-methane reforming (SMR) process by in-situ CO2 removal to produce high hydrogen content synthesis gas. Sorption-enhanced (SE) concept is applied to improve process performance. In the proposed structure, the solid phase CO2 adsorbents and pre-reformed gas stream are introduced to a gas-flowing solids-fixed bed reactor (GFSFBR). One dimensional mathematical model is developed to evaluate the effect of adsorbents on the efficiency of SMR at steady-state condition. To prove the accuracy of the considered model, simulation results are compared against available industrial plant data. Modeling results represent that application of SE method in SMR enhances syngas production and reduces CO2 content. The reported data indicate that by overcoming thermodynamic limitations and controlling coke formation, CH4 conversion and H2 yield improve about 23% and 29%, respectively. For more investigation, sensitivity analyses of some related parameters of the pre-reformed gas are performed to predict optimum conditions. Finally, the proposed GFSFBR for the SMR process leads to higher hydrogen production and H2/CO ratio. As the last part, non-dominated sorting genetic algorithm-II is applied to perform multi-objective optimization of the SE-SMR.