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Abstract 
In this paper, drag coefficient of infinite quadralobe catalytic particle with non-circular 
cross sections has been investigated by Computational Fluid Dynamics (CFD) methods 
and for this purpose FEMLAB Multiphysics V2.3 based on finite element methods have 
been used. A new simple correlation for drag coefficient of infinite quadralobe particle 
has been established over the range of Reynolds numbers from 0.01 up to 1000.A 
comparative study has been made between the numerical results of this study and the 
available data in the literature. The predicted drag coefficient of infinite cylinder shows 
good agreement with experimental data within a converging quantitative error of less 
than 7% up to Reynolds number of 1000. The drag coefficient results for cross flow on 
infinite quadralobe particle shows higher value in comparison with cylindrical particle. 
In addition, influence of different number of particles (single, two, three and four 
particles) and orientation angle of particles on drag coefficient have been investigated. 
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1. Introduction∗ 
Reliable knowledge of the terminal settling 
velocity of particles in quiescent fluids, and 
the drag force on particles placed in moving 
fluid streams are often required for 
equipment design in a wide range in 
chemical, petrochemical, mineral, 
environmental and process industries. 
Examples are fixed, trickle and fluidized bed 
reactor, pollutant transport in the atmosphere, 
pneumatic and hydraulic conveying of coarse 
particles, liquid-solid separation and 
classification techniques, etc. [1]. 
For simulation of particles moving through 
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the fluids or flow moving over them, detailed 
information of the drag force acting on these 
particles is necessary. Basically, drag 
coefficient correlations are important design 
parameters in many phase-separators. Many 
relationships have been developed and 
presented in the literature relating the drag 
coefficient (Cd) as a function of Reynolds 
number (Re) for spherical particles. These 
correlations are complex and contain many 
arbitrary constants. Two good reviews have 
been published by Clift et al. [2] and Khan 
and Richardson [3] for spherical bodies drag 
coefficient correlations. A comparison 
between most of these correlations for 
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spheres shows relatively low deviations [4]. 
The steady-state free-fall conditions of 
isolated groups of ordered packed spheres 
moving through Newtonian fluids have been 
studied experimentally by Tran-Cong 
et al. [5]. 
In the case of non-spherical particles, less 
information can be found in the published 
literature [6-8]. By least squares fitting, an 
approximate solution to the equation of 
motion governing Stokes flow past a number 
of isolated closed bodies such as cylinders 
and cones was obtained by Bowen and 
Masliyah [9]. A number of empirical 
correlations have been proposed for regular 
polyhedrons by Pettyjohn and Christiansen 
[10] and Haider and Levenspiel [11]. Haider 
and Levenspiel [11] presented a generalized 
drag coefficient versus Reynolds for non-
spherical particles. They used the concept of 
sphericity to account for the particle shape. 
Predictions by their correlation showed 
relatively poor accuracy for particles with 
sphericity equal to 0.67, therefore, some 
authors [12-15] attempted to improve the 
accuracy of the Haider and Levenspiel [11] 
correlations. Chien [12] and Hartman et al. 
[13] used the sphericity as shape factor, and a 
different approach was presented by 
Thompson and Clark [14]. These authors 
defined a shape factor, which is simply the 
ratio of the drag coefficient for the non-
spherical particle to that of a sphere one, both 
evaluated at Re=1000. Two-dimensional 
flow around a circular cylinder located in a 
laminar crossflow for the Reynolds number 
range 10-4≥ Re≥ 200 was presented 
numerically byLangeet al. [16]. Gabitto and 
Tsouris [17] also reported a correlation to 
calculate explicitly terminal velocities for 

particles of different shapes. Chhabra et al. 
[1] collected experimental results of 19 
independent studies comprising several 
different particle shapes, including cylinders. 
The resulting data base consisted of 1900 
experimental points covering wide ranges of 
physical properties and kinematic conditions. 
Considerable research effort has been 
expended in developing reliable and accurate 
predictive methods for estimating the drag 
force on the free falling velocity of particles 
in fluids. However, only averaged correlation 
of the drag coefficient for different particle 
shapes is available.  
The laminar, two-dimensional flow around a 
particle located in a spatially and time 
constant velocity field has been of 
continuous interest to researchers involved in 
basic fluid mechanics. Because of common 
complexity in particles geometry, most 
numerical and experimental studies have 
investigated infinite particles such as 
cylinders [18]. Batchelor [19] derived an 
approximate expression for the drag of long 
cylinders with the symmetry axis both 
parallel and perpendicular to the flow. 
Compared with the flow past an infinite 
cylinder, there are remarkably few 
publications on drag force of other infinite 
complex particles. In addition to the viscosity 
of the medium, and the density of the fluid 
medium, drag coefficient of particle is 
strongly influenced by its size, shape and 
orientation with respect to flow direction. 
Indeed, the lack of unambiguous measure of 
shape, size and orientation during the settling 
of a non-spherical particle appears to be the 
main obstacle in developing universally 
applicable correlations. Currently efforts are 
directed at the development of a single 
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The drag force is the component of the fluid 
force acting on a particle in the streamwise 
(x) direction and normal (y) direction to the 
streamwise direction, Fd, and it was 
computed by integrating the pressure and 
viscous stresses over the surface of a particle: 
 

d d,p d,f
S S

F F F pds ds= + = − + τ∫ ∫  (3)

The drag force, Fd, experienced by a particle 
settling with a uniform velocity, U0, is 
proportionalto its kinetic energy: 
 

2
0

1
2d d pF C A Uρ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

(4) 

Where Cd is defined in terms of drag 
coefficient. Ap is the projected surface area of 
the particle normal to the direction of its 
motion and ρ is the density of the fluid. Most 
particles of practical interest have irregular 
shape. A variety of empirical factors have 
been proposed to describe non-spherical 
particles and correlate their flow behavior. 
Most of the aforementioned studies have 
employed the so-called equivalent volume 
sphere diameter as the characteristic size and 
sphericity to quantify its shape. Thus, all 
these expressions are as follows: 
 

0),(Re, =ϕdCf  

Where Re is the particle Reynolds number 
and  is the sphericity of the particle.  
 

3. CFD Simulation 
3-1. Modeling Details 
The most important assumptions of the CFD 
model are: 
• The two-dimensional steady state model 

was used. 

• An unstructured triangular grid was used. 
Moreover, mesh is refined in the regions 
close to the particle’s wall due to the 
higher gradients in these regions. 

• The fluid was assumed incompressible 
because the fluid flow in packed beds has 
(in practice) very low Mach numbers. 

• Both creepy and laminar flow regimes 
were studied. To do so, the Reynolds 
number (based on approaching velocity 
and equivalent particle diameter) was 
varied from 0.01 to 1000 to fully cover 
range of creepy and laminar flow. 

• The model in commercial CFD package 
FEMLABMultiphysicsver 2.3, which is 
based on the finite element method, was 
implemented. 

Fig. 2 illustrates four different computational 
domains A) infinite cylindrical particle, B, C 
and D different number of infinite 
quadralobe particle. All particles are 
subjected to the following boundary 
conditions: 
• At inlet: uniform velocity 
• At outlet: pressure outlet 
• At bottom and top: Symmetry boundary 
• At particle surface: No slip condition 
 
3-2. Computational domains 
As is pointed out above, due to lack of 
sufficient experimental data for validating 
drag coefficient of quadralobe particle, the 
drag force of infinite circular cylinder in an 
infinite domain was simulated (Fig. 2a). 
The flow field around the cylinder is 
modeled in two dimensions with the axis of 
the cylinder perpendicular to the direction of 
flow. The cylinder is modeled as a circle and 
a rectangular flow domain is created around 
the cylinder (Fig. 2a). The upstream and 
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downstream lengths are 15 and 30 times the 
diameter of the cylinder, respectively. The 
width of the flow domain is 20 times the 
diameter of the cylinder. Similar to 
cylindrical particle, single quadralobe 

particle in the same computational domain 
has been studied (Fig. 2b). Because of 
influence of particles effect on each other, 
two, three and four quadralobe particles have 
been simulated (Figs. 2c, 2d and 2e). 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Figure 2. (a) Infinite cylindrical particle, (b) Single infinite quadralobe particle, (c) Two infinite quadralobe 

particles, (d) Three infinite quadralobe particles, (e) Four infinite quadralobe particles. 
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