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Abstract 
Stuck pipe is one of the most serious drilling problems, estimated to cost the petroleum 
industry hundreds of millions of dollars annually. One way to avoid stuck pipe risks is 
to predict the stuck pipe with the available drilling parameters which can be employed 
to modify drilling variables. In this work, Artificial Neural Network (ANN) was used for 
stuck pipe prediction according to the fact that this method is applicable when 
relationships of parameters are too complicated. Based on the drilling fluid condition 
from one of the Iranian oil fields, stuck pipe instances were divided into static and 
dynamic types. The results of this study show more than 90% accuracy for stuck pipe 
prediction in the investigated oilfield. The methodology presented in this paper enables 
the Iranian drilling industry to estimate the risk of stuck pipe occurrenc during the well 
planning procedure.  
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1- Introduction 
Stuck pipe costs are a major drilling trouble 
cost for the drilling industry. Various 
estimates indicate stuck pipe costs exceed 
$250 million per year [1]. Problems 
associated with this phenomenon can range 
in severity from minor inconvenience, which 
can increase costs slightly, to major 
complications, which can have significantly 
negative results, such as loss of the drill 
string or complete loss of the well [2]. The 
risk of mechanical or differentially stuck pipe 

will be increased because of pore pressure 
reduction in drilling of the majority of 
mature oilfields in Iran. This is because of 
the fact that decreasing pore pressure 
increases the chance of differential pressure 
stuck pipe. On the other hand, using lower 
mud weights to have reasonable differential 
pressure may increase the risk of wellbore 
instability and related problems such as 
mechanical sticking in the open hole section. 
Prediction of stuck pipe can be considered as 
the mentioned procedure through which the 
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risk of getting stuck can be minimized by 
modifying drilling variables for the condition 
of high risk of sticking. In this work ANN 
was utilized for stuck pipe prediction either 
mechanically or differentially. The first use 
of this method for prediction of differential 
stuck pipe was developed by Siruvuri, et al. 
in the Gulf of Mexico [3].  
In this paper, after some introductory 
material regarding the mechanisms of stuck 
pipe, ANN, along with the training of this 
network will be presented. Data acquisition, 
selection of the parameter, data pre-
processing, and the allocated network 
architecture design will be described in the 
material and methods section. The result of 
this work presents the outcome analysis of 
drilling stuck pipe by ANN, which is 
summarized by dynamic and static analysis. 
After a detailed discussion about the results 
of this work, the successful remarks will be 
shown in the conclusions section. The 
methodology presented in this paper enables 
the Iranian drilling industry to estimate the 
risk of stuck pipe occurrence during the well 
planning procedure.  
 
1.1- Stuck pipe description 
Often during drilling operations the drill 
string becomes stuck. Sticking can occur 
while drilling, making a connection, logging, 
testing, or during any kind of operation 
which may involves leaving the equipment in 
the hole [1]. Generally, stuck pipe problems 
are divided into two categories: mechanical 
sticking and differential sticking. Mechanical 
sticking usually occurs when the drill string 
is moving and is caused by a physical 
obstruction or restriction [4]. Mechanical 
sticking can be classified into two major 

subgroups: a) Hole pack-off and bridges; 
stuck pipes which are related to wellbore 
instability or settled cuttings are in this 
category and b) Wellbore geometry 
interferences; this refers to stuck pipes which 
are related to the condition of wellbore 
geometry such as key seats or an under-gage 
hole. 

Major causes of mechanical stuck pipe are 
wellbore instability and improper hole 
cleaning. Most wellbore instability problems 
are related to shale layers due to swelling and 
hole enlargements resulting from 
compressive failure owing to excessively low 
wellbore pressure [5]. Adequate hole 
cleaning, on the other hand, is an essential 
part of the drilling operation. If the cuttings 
are not removed from the well properly, they 
settle around the drill string causing the drill 
collars to become stuck. This problem is 
encountered often in over gauge sections 
where annular velocities are low. Also, risk 
of hole cleaning increases in directional 
wells. The directional well having an 
inclination angle between 30-60o is the worst 
condition for hole cleaning [2]. 
As the next category of stuck pipe, 
differential sticking is due to differential 
pressure forces from an overbalanced mud 
column acting on the drill string against a 
filter cake deposited on a permeable 
formation. The area of the pipe that is 
embedded into the mud-cake has a pressure 
equal to the formation pressure acting on it, 
while the pressure which acts on the other 
section of pipe is hydrostatic pressure in the 
drilling mud. When the hydrostatic pressure 
(Ph) in the well bore is higher than the 
formation pressure (Pf), there will be a net 
force pushing the collar towards the borehole 
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wall. The resultant force of the overbalance 
acting on an area of drill string is the force 
that sticks the string. This type of sticking 
does not occur in shales and other very low 
permeability formations where mud filter 
cakes normally do not form. Commonly, 
differential sticking occurs when the drill 
string or tool is stationary (or sometimes 
when it is moving very slowly) [5]. If the 
pipe becomes stuck, every effort should be 
made to free it quickly. The probability of 
freeing stuck pipe successfully diminishes 
rapidly with time. Early identification of the 
most likely cause of a sticking problem is 
crucial, since each cause must be remedied 
with different measures. An improper 
reaction to a sticking problem could easily 
make it worse. An evaluation of the events 
leading up to the stuck pipe occurrence 
frequently indicates the most probable cause 
and can lead to the proper corrective 
measures [2]. 
 
 
1.2- ANN description 
ANNs are information processing systems 
that are a rough approximation and 
simplified simulation of a biological learning 
process and have performance characteristics 
similar to those of biological neural networks 
[6,7]. These are adaptive, parallel 
information processing systems, which are 
able to develop associations, transformations 
or mappings between objects or data and 
have proven to have potential in solving 
problems that require pattern recognition [8]. 
The basic elements of an ANN are the 
neurons (the processing elements) and their 
connection strengths (weights). The input to 
each neuron is multiplied by its associated 

weighting factor and then summed with the 
product of each of the other input nodes and 
their respective weighting factors. An 
activation threshold is then added to this sum 
and the result is processed by a transform 
function within the neuron. The most 
common transform function, and the one 
used in this study, is s-shaped sigmoid 
function. The logistic function provides non-
linearity to the model and constrains the 
neuron’s output signal to fall within a fixed 
range (0, 1 or -1, 1). It is also smooth and has 
easily differentiable characteristics that 
facilitate network training algorithms [9]. A 
multilayer network usually consists of an 
input layer, one or more hidden layers, and 
an output layer. The layer of input neurons 
receives the data from the input files. The 
number of neurons in the input layer 
corresponds to the number of parameters that 
are being presented to the network as input. 
The same is true for the output layer. The 
neurons in the hidden layer or layers are 
responsible primarily for feature extraction. 
They provide increased dimensionality and 
accommodate such tasks as classification and 
pattern recognition [7]. 
There are several types of ANNs; the most 
common types are the feed-forward and 
back-propagation architectures which are 
used in this study. A feed-forward network 
has a layered structure and feed-forward 
topology. Each layer consists of units which 
receive their input from units of a layer 
directly below and send their output to units 
in a layer directly above the unit. There are 
no connections within a layer. The term back 
propagation refers to the mechanism of 
adjusting network weights and biases for 
reduction of error, which is propagated back 
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through the system causing changes to the 
weights and biases of the network [6, 9].  
 
1.3- ANN training 
In a typical neural data processing procedure, 
the database is divided into three separate 
portions: training, validation, and testing. 
The training set is used to calibrate the 
model. The validation set is used to ensure 
the generalization of the developed network 
during the training phase. The testing set is 
used to examine the final performance of the 
network. In the training process, the desired 
output in the training set is used to help the 
network adjust the weights between its 
neurons or processing elements [7-10].  
Given a topology of the network structure 
expressing how the neurons are connected, a 
learning algorithm takes an initial model with 
some prior connection weights (usually 
random numbers) and produces a final model 
by numerical iterations. Hence learning 
implies the derivation of the posterior 
connection weights when a performance 
criterion is established. Learning can be 
performed by supervised or unsupervised 
algorithm. The former requires a set of 
known input-output data patterns (or training 
patterns), while the latter requires only the 
input patterns [8]. 
Through the course of training, the network 
is continuously trying to correct itself and 
achieve the lowest possible error (global 
minimum). Usually, there are locations on 
the error surface that will cause temporary 
convergence, even before sufficient learning 
has taken place by the network. This occurs 
when the network system finds an error that 
is lower than the surrounding possibilities 
but does not ultimately reach the smallest 

possible error. This problem is called the 
local minima problem [6, 11]. In order to 
overcome this problem, some practical 
recommendations are suggested such as 
randomizing the initial weights with small 
numbers in an interval [- 1/n, 1/n], where n is 
the number of the neuronal inputs or using 
another formula for calculating the output 
error. Probabilistic methods can help to avoid 
this problem, but they tend to be slow [12, 
13]. During the training process, the question 
of when to stop the training arises. How 
many times should the network go through 
the data in the training set to learn the system 
behavior? When should the training stop? 
These are legitimate questions because a 
network can be over trained. In the neural-
network-related literature, overtraining is 
also referred to as memorization. Once the 
network memorizes a data set, it is incapable 
of generalization, even if it fits the training 
data set very accurately [7, 14].  
 
2- Material and methods 
It is clear that the performance of ANNs 
hinges heavily on the data. If one does not 
have data that cover a significant portion of 
the operating conditions or if they are noisy, 
then ANN technology is probably not the 
right solution. On the other hand, if there is 
plenty of data and the problem is poorly 
understood to derive an approximate model, 
such as drilling stuck problems, then ANN 
technology is a good choice.  At present, 
ANNs are emerging as the technology of 
choice for many applications, such as pattern 
recognition, prediction, system identification, 
and control. 
According to the fact that this method is 
applicable when relationships of parameters 
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are too complicated, ANN technology was 
applied for drilling stuck pipe prediction in 
this work. The sigmoid function which is the 
most common transform function, was used 
in this study. Based on a typical neural data 
processing procedure, a partitioning ratio of 
8:1:1 was considered for splitting data into 
three subsets (i.e., training subset constitutes 
80% of the total data and each of the 
validation and testing subsets include 10% of 
the database). In the first part of this section, 
data acquisition will be presented. Selection 
of the appropriate parameters will be 
explained as the main factors that had to be 
chosen as input data for ANN. Data pre-
processing and network architecture design 
will be described at the end of this section.  
 
 
2.1- Data acquisition 
A total number of 275 cases were collected 
from the daily drilling reports (DDRs) in one 
of the Iranian oil fields. The data contained 
115 stuck and 160 non-stuck cases. Non-
stuck data were collected from days that the 
wells were completely safe and had not 
become stuck in the same general areas of 
operation. According to the drilling fluid 
condition in the different hole sections, stuck 
pipes can be divided into dynamic and static 
types. In dynamic condition the drilling fluid 
is in circulation, while it is not circulating 
during static condition. Run in Hole (RIH), 
Pull out of Hole (POOH), pipe connection 
and surveying could be categorized in static 
condition. From the 115 stuck cases in this 
study, 40 stuck pipe cases occurred during 
dynamic condition and 75 cases occurred 
during static conditions. The parameters that 

were collected as the input data are as 
follows: mud properties, depths, hole 
geometry information, hydraulics, bottom 
hole assembly size, inclination angle, drill 
pipe size, Weight on Bit (WOB), formation 
pressure, and mud loss volume at formation. 
Mud properties are Mud Weight (MW), 
Plastic Viscosity (PV), Yield Point (YP), 10-
Second Gel Strength (GL1) & 10-Minute Gel 
Strength (GL2), Marsh funnel viscosity, pH 
or Alkalinity of any solution (ALK) for Oil 
Base Mud (OBM), Fluid loss (conventional 
API or High Temperature High Pressure 
(HPHT) API), Chloride Content (CL), 
Calcium Content (CA) or Stability of Mud 
(ES) for OBM), Solid percent, and Oil/Water 
ratio. 
 
 
2.2- Selection of the parameters 
Understanding the influence of the input 
parameters is considered the primary concern 
when developing ANN models. Introducing 
more input parameters than required will 
result in a large network size and 
consequently decrease learning speed and 
efficiency [14]. Since the drilling process has 
many effective parameters, it is essential to 
find the best set of variables that are related 
to stuck pipe. The following criteria can be 
applied [15]: 

1) There must be a spread of values of the 
parameter in the databases. This allows 
the neural network to more easily 
approximate the function. 

2) The variable must not be dependent on 
other input variables only. A parameter 
may be dependent on other input 
variables, but must also be dependent on 
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a parameter that is not an input variable. 
In this way the variable will provide 
information about the well that is not 
already provided by the other variables. 

In this work, the above criteria were 
considered, and finally, some parameters 
were removed from the analysis. These 
parameters are WOB, CA, MW, True 
Vertical Depth (TVD), Solid percent, Flow 
rate, API Fluid loss, loss at formation and Pf. 
Among these variables, WOB was removed 
considering the first criterion. There are three 
types of values for API fluid loss: a) 
conventional API fluid loss, b) HTHP fluid 
loss, and 3) finally, No-control in some 
cases. Obviously these types differ 
considerably and cannot be considered as a 
single parameter. Also, converting these 
types into a single new parameter is difficult 
and may be impossible. Therefore, it cannot 
be included in the analysis. Other parameters 
were removed by considering the last 
criterion. 
For the purpose of reducing the remaining 
parameters, a new dimensionless parameter 
was defined as Geometric Factor (GF) in this 
study. This parameter is a function of the 
following parameters: a) open hole length, b) 
bottom hole assembly length, c) outside 
diameter of drill collar, d) hole size and 
inclination angle. As shown by most 
researchers, these parameters are some 
causes of stuck pipe occurrences [16-23]. 
According to the relationship of parameters 
of GF with the likelihood of sticking, this 
function  was defined in this work as 
equation 1: 
 

effD
OHlmGF ..

=  (1) 

where: 
m and l are constants which are related to the 
inclination angle (θ ) and Bottom Hole 
Assembly length (LBHA), and can be obtained 
from Table 1 and Table 2. OH is the open 
hole length in meters. Deff is the effective 
diameter in inches according to equation 2: 
 

collar

hole
eff OD

DD
2

=   (2) 

 
Table 1. m parameter in GF for various ranges of 
inclination angle 

 
 
Table 2. l parameter in GF according to BHA length 

 
 

The new defined function was used in the 
analysis instead of its parameters. Hence, the 
final selected parameters are pH, PV, YP, 
GL2, CL, Pdiff, GF, Annular Velocity (Vann), 
Revolutions per Minute (RPM) and Rate of 
Penetration (ROP), in which the last three 
items refer to dynamic conditions only. 
 

2.3- Data pre-processing 
Before supplying the available data to the 
neural network, it is crucial to pre-process 
the data. Data pre-processing helps to speed 
up the learning process and ensures that 
every parameter receives equal attention by 
the network and improving the overall 
network performance. Before training, it is 
often useful to scale the inputs and targets so 
that they always fall within a specified range 
[14]. In this work, the available data have 
been normalized into the range of 0 to 1 by 
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using equation 3: 
 

minmax

min

XX
XXX n −

−
=   (3) 

 
where: 
Xn: normalized value, Xmin: minimum of 
original values, Xmax: maximum of original 
values, and X: original value. 
Applying the above procedure in this work 

resulted in significant improvement in the 
performance of the ANN. Table 3 and Table 
4 show the statistical properties of the 
selected parameters before normalizing. In 
order to improve the final performance of the 
ANN and also minimize the distribution of 
differential pressure parameter, values 
greater than 1500 psi were considered as 
1500 psi. Similarly, this concept is true for 
GF and was applied in this work. 

 
 
 

Table 3. Statistical properties of selected parameters for dynamic analysis 

 
 

 
 
 

Table 4. Statistical properties of selected parameters for static analysis 
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2.4- Network architecture design 
As mentioned earlier the number of neurons 
in the input and output layers quite simply 
determine the number of input and output 
parameters. In this work, there is one output 
parameter and hence one neuron in the 
output layer, which is a percentage 
representing the probability of stuck pipe. 
For hidden layers it has been stated that a 
network with a single hidden layer and 
sigmoidal transfer function is able to model 
any continuous relationship. The use of two 
hidden layers was also examined, but two 
hidden layer networks generally have more 
connections and need more data [15]. 
Consequently, a network with one hidden 
layer was selected for this work. The number 
of hidden neurons was selected according to 
some guidelines in references [11, 15]. 
Considering those guidelines, six elements 
and later a fewer number of processing 
elements was selected for finding the best 
network. 
 
3- Results 
3.1- Dynamic condition 
Based on a partitioning ratio of 8:1:1, the 
numbers of training, validation, and testing 
data sets for dynamic condition were 155, 20 
and 20 respectively. Initially a network with 
six processing elements in its hidden layer 
was selected. Then, the number of neurons 
was reduced and finally a network with 3 
neurons in its hidden layer was selected. 
Through eliminating unnecessary parameters, 
the appropriate parameters were selected to 
improve network performance. For this 
purpose different parameters were removed 
individually and the network performance 
was examined. This procedure led to 

reducing the number of inputs to 6 
parameters. Final parameters were 
differential pressure, pH, GF, RPM, ROP and 
PV. It was observed that the performance in 
the new condition and the prediction of stuck 
pipe was performed with high accuracy. 
There are two reasons wherein this behaviour 
is confirmed; first, it was seen that other 
parameters do not play an important role in 
stuck pipe occurrences in the essence of this 
study. Second, the decreased input 
parameters had caused numerous connections 
in the network, and consequently a higher 
number of training data sets are required. 
The final selected network has a three layer 
feed-forward and back-propagation with a 
sigmoid type activation function in the 
hidden and output layers. The numbers of 
neurons in the input, hidden, and output 
layers are 6, 3 and 1 respectively. This 
network is shown in Fig. 1. 
 

 
 

Figure 1. Selected network for dynamic analysis. 
 
Weights and biases which are related to the 
final network for stuck pipe prediction are 
shown in Table 5. Results of the selected 
network for three data sets and their 
respective errors are shown in Table 6. 
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Table 5. Weights and biases of selected network in the dynamic condition 

 
 
 

Table 6. Results of selected network for three data sets and their respective error in the dynamic condition 

 
 
3.2- Static condition 
The same partitioning ratio of 8:1:1 was 
selected in the static condition, in which the 
numbers of data sets were 184, 23 and 24 for 
training, validation, and testing respectively. 
Similar to the dynamic condition, reducing 
the number of hidden neurons and 
eliminating unnecessary input parameters 
was considered. At the end, four processing 
elements and six input parameters were 
selected for the network. Final parameters 
are differential pressure, GF, pH, YP, PV and 
GL. The final network is a three layer feed-
forward back-propagation network with six, 
four and one neuron in its input, hidden and 
output layer correspondingly. Activation 
functions are “tansig” and “logsig” in the 

hidden and output layer respectively. Fig. 2 
shows this network graphically. Weights and 
biases of the final network are shown in 
Table 7. Table 8 summarizes the results of 
the selected network for three data sets and 
their respective errors. 
 

 
Figure 2. Selected network for static analysis. 
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Table 7. Weights and biases of selected network in static condition 

 
 
 

Table 8. Results of selected network for three data sets and their respective error in static condition 

 
 
 
4- Discussion  
As shown in Table 6, analysis in the dynamic 
condition shows 95% accuracy for the last 
two data sets; validation and testing. 
According to Table 6, there is no error for the 
123 non-stuck cases in the training data set. 
On the other hand, among 32 stuck cases in 
the same data set, the network has found 26 
correct answers. Likewise, from the total 
number of four stuck cases, validation and 
testing data sets had three correct responses. 
Nevertheless, in those two data sets, no 
errors were observed in the non-stuck cases. 
For training data set in dynamic condition, 
among 155 cases, 149 correct responses were 

observed that show more than 96% 
exactness. Also, the network responses for 
validation and testing data sets individually 
include 19 correct answers out of 20 cases 
that show 95% accuracy. 
For the static condition, total stuck data in 
the training data set was 60 cases, as shown 
in Table 8. This table shows 85% accuracy in 
stuck cases for static condition. Correct 
responses for non-stuck data were 122 out of 
124 cases in the training data set (98.4% 
accuracy). From the total number of seven 
cases of stuck pipe in the validation data set, 
the network responded to six stuck pipe 
incidences (85.7% accuracy). The non-stuck 
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cases in this set include 15 correct answers 
out of 16 cases (95.6% accuracy). Finally, in 
the case of stuck data, from eight cases, the 
network response for the testing data set 
included six correct responses (75% 
accuracy), while non-stuck data responded 
without any error (100% accuracy). Overall, 
in the static condition the training, validation, 
and testing data sets had a greater than 93% 
accuracy. 
As the input parameters, the network 
topology, the performance function, and the 
learning rule were chosen by the network 
designer, the criteria to stop the training 
phase will be chosen by him/her too. The 
criteria of the desired outputs were 
considered 70% and 50% for stuck and non-
stuck cases respectively. In this way, for 
stuck cases a response which is greater or 
equal to 70 percent is a correct response and 
any percent less than 70 percent is referred to 
as an incorrect answer. However, for the case 
of non-stuck, any percent less than was 50 
considered as a good estimation of reality, 
which means such a condition has some 
potential for stuck pipe occurrence. As a 
matter of fact, 70% and 50% criteria were 
used to stop the training phase. So, in order 
to gain the lowest possible error (global 
minimum) and on the other hand, to avoid 
over-fitting or memorizing during training, 
the mentioned assumptions were considered 
in this work. Note that over-fitting includes a 
quick decrease in error for the training set, 
while error of validation and testing sets 
increases rapidly. 
Referring to the networks responses, it can be 
seen that some stuck data were predicted 
incorrectly. The types of stuck pipe cases 
were compared with non-stuck pipe cases. It 

was observed that most of the stuck pipes 
occurred in a normal condition for the 
available drilling parameters. The existing 
data have some non-stuck objects which are 
very similar to the stuck cases, either in the 
selected parameters for analysis or in other 
parameters. Considering this similarity, it can 
be said that causes of sticking in these cases 
were not related to the available parameters. 
Therefore, error of prediction in these cases 
is not related to the networks performance, 
but is related to data or these kinds of 
sticking are related to unpredictable sources 
and cannot be predicted with any procedure. 
 
5- Conclusions 
1- Selected network can be utilized for 

calculating the risk of stuck pipe either 
mechanical or differential before any 
drilling operations. 

2- Successful stuck pipe shows that there 
are analytical or statistical differences 
between days that the stuck pipe 
happened and the non-stuck days which 
are completely safe. 

3- High accuracy for stuck pipe prediction 
using selected parameters illustrates that 
most causes of stuck pipe are due to 
inappropriate values of the selected 
parameters. Chosen parameters were pH, 
PV, YP, Gel, RPM, ROP, Pdiff, and GF.  

4- Use of GF and the success of this 
parameter in this work demonstrated that 
some parameters can be replaced with a 
new defined parameter. In this way, 
dimensionless parameters can be more 
beneficial. 
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