Dehydration of Natural Gas Using Synthesized Chabazite Zeolite Membranes

Document Type: Full article

Authors

Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

ine"> Chabazite zeolite membranes were synthesized for their potential application in dehydration of natural gas. The membranes were prepared using secondary growth method on porous ·-alumina substrates. Hydrothermal treatment was applied for the synthesis of chabazite seeds. The membranes were synthesized at four temperatures of 100, 120, 140, and 160°C; and duration of 20 h. Separation performance of assynthesized membranes was evaluated through permeation ofwater vapor and methane as single gas. Moreover, the structure and morphology ofas-synthesized chabazite zeolite membranes as well as seeds were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). The results revealed that the optimum temperature for the synthesis ofchabazite membranes is 140°C while at lower and higher temperatures, lower separation performances were observed. At the optimum synthesis temperature, an ideal selectivity of 23 was obtained for water vapor/methane, while a thin and integrated chabazite zeolite layer of about 5 m in thickness was synthesized over the surface ofalumina substrate.

Keywords


[1]     Gandhidasan, P., Al-Farayedhi, A. A. and Al-Mubarak, A. A., “Dehydration of natural gas using solid desiccants”, Energy, 26, 855 (2001).

[2]     Al-Marzouqi, M. H., El-Naas, M., Marzouk, S. and Abdullatif, N., “Modeling of chemical absorption of CO2 in membrane contactors”, Sep. Purif. Technol., 62, 499 (2008).

[3]     Al-Marzouqi, M. H., El-Naas, M. H., Marzouk, S. A. M., Al-Zarooni, M. A., Abdullatif, N. and Faiz, R., “Modeling of CO2 absorption in membrane contactors”, Sep. Purif. Technol., 59, 286 (2008).

[4]     Funke, H. H., Chen, M. Z., Prakash, A. N., Falconer, J. L. and Noble, R. D., “Separating molecules by size in SAPO-34 membranes”, J. Membr. Sci., 456, 185 (2014).

[5]     Li, S., Falconer, J. L. and Noble, R. D., “SAPO-34 membranes for CO2/CH4 separation”, J. Membr. Sci., 241, 121 (2004).

[6]     Li, X., Kita, H., Zhu, H., Zhang, Z., Tanaka, K. and Okamoto, K. I., “Influence of the hydrothermal synthetic parameters on the pervaporative separation performances of CHA-type zeolite membranes”, Micro. Meso. Mater., 143, 270 (2011).

[7]     Hasegawa, Y., Kusakabe, K. and Morooka, S., “Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube”, Chem. Eng. Sci., 56, 4273 (2001).

[8]     Hasegawa, Y., Watanabe, K., Kusakabe, K., and Morooka, S., “The separation of CO2 using Y-type zeolite membranes ion-exchanged with alkali metal cations”, Sep. Purif. Technol., 22, 319 (2001).

[9]     Huang, A., Liu, Q., Wang, N., Tong, X., Huang, B., Wang, M. and Caro, J., “Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyl-trimethoxysilane functionalized supports”, J. Membr. Sci., 43, 757 (2013).

[10]   Krishna, R. and van Baten, J. M., “A comparison of the CO2 capture characteristics of zeolites and metal–organic frameworks”, Sep. Purif. Technol., 87, 120 (2012).

[11]   Lara-Medina, J. J., Torres-Rodríguez, M., Gutiérrez-Arzaluz, M., Mugica-Alvarez and, V., “Separation of CO2 and N2 with a lithium-modified silicalite-1 zeolite membrane”, Int. J. Green. Gas Control, 10,  494 (2012).

[12]   Mirfendereski, S. M., Mazaheri, T., Sadrzadeh, M. and Mohammadi, T., “CO2 and CH4 permeation through T-type zeolite membranes: Effect of synthesis parameters and feed pressure”, Sep. Purif. Technol., 61, 317 (2008).

[13]   Xiao, W., Chen, Z., Zhou, L., Yang, J., Lu, J. and Wang, J., “A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating”, Micro. Meso. Mater., 142, 154 (2011).

[14]   Yin, X., Chu, N., Yang, J., Wang, J. and Li, Z., “Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation”, Int. J. Green. Gas Control, 15, 55 (2013).

[15]   Ping, E. W., Zhou, R., Funke, H. H., Falconer, J. L. and Noble, R. D., “Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations”, J. Membr. Sci., 415, 770 (2012).

 

[16]   Zhou, R., Ping, E. W., Funke, H. H., Falconer, J. L. and Noble, R. D., “Improving SAPO-34 membrane synthesis", J. Member. Sci., 444, 384 (2013).

 [17]  Hasegawa, Y., Abe, C., Mizukami, F., Kowata, Y. and Hanaoka, T., “Application of a CHA-type zeolite membrane to the esterification of adipic acid with isopropyl alcohol using sulfuric acid catalyst”, J. Membr. Sci., 415, 368 (2012).

[18]   Hasegawa, Y., Abe, C., Nishioka, M., Sato, K., Nagase, T. and Hanaoka, T., “Influence of synthesis gel composition on morphology, composition, and dehydration performance of CHA-type zeolite membranes”, J. Membr. Sci., 363, 256 (2010).

[19]   Hasegawa, Y., Abe, C., Nishioka, M., Sato, K., Nagase, T. and Hanaoka, T., “Formation of high flux CHA-type zeolite membranes and their application to the dehydration of alcohol solutions”, J. Membr. Sci., 364, 318 (2010).

[20]   Hasegawa, Y., Hotta, H., Sato, K., Nagase, T. and Mizukami, F., “Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution”, J. Membr. Sci., 347, 193 (2010).

[21]   Robson, H., Verified Syntheses of Zeolitic Materials, 2nd ed., ELSEVIER, Amsterdam, (2001).

[22]   Carreon, M. A., Li, S., Falconer, J. L. and Noble, R. D., “Alumina-Supported SAPO-34 Membranes for CO2/CH4 Separation”, J. Americ. Chem. Soc., 130, 5412 (2008).