Modeling and Simulation of a Divided Wall Column for 1,3 Butadiene Purification

Document Type: Research note

Authors

Chemical Engineering Department, Sistan and Balouchestan University, Zahedan, Iran

Abstract

The distillation process remains as the most common method ofseparation in chemical process industries. The energy used from this process accounts for an estimated 3% of the world energy consumption. The Dividing-Wall Column (DWC) for separation of multi-component mixtures has recently become a major concern ofindustries. The design ofDWC is based on Thermally Coupled Distillation System (TCDS) eliminating some of the operational equipment. This paper presents the results of simulation of a DWC by using 3-simple sequence column model based on shortcut method by a commercial chemical Engineering software for purification of1,3 butadiene unit. From the results, it is shown, by using a DWC instead of two conventional sequential column, the heat duties ofboth the condenser and the reboiler are reduced about 28.5% and also desirable purity ofthe key-components for the case ofstudy have been achieved.

Keywords


[1]    Laszlo, S., Miklos B. and Sandor Nemeth., “Analysing Divided Wall Column”, Clean Techn. Environ. Policy., 13, 633, (2011).

[2]    Yildirim, O., “Dividing wall columns in chemical process industry: A review on current activities”, Sep. Purif. Tech., 80 (3), 403 (2011). 

[3]    Fabricio, O., Barroso-Munoza., S., Hernandez., H., Hernandez-Escotoa., J.,  Segovia-Hernandez.,G., Rico-Ramirez.,V. and  Chavezc., R. H. “Experimental Study on Pressure Drop in a Dividing Wall Distillation Column”, Chem. Eng. Process., 49 (2), 177 (2010).

[4]    Young Han Kim., “Structural design and operation of a fully thermally coupled distillation column”, Chem. Eng., 85, 289 (2002).

[5]    Premkumar, R. and Rangaiah, G. P., “Retrofitting conventional column systems to Dividing-Wall Columns”, Chem. Eng. Res. Des., 87 (1), 47 (2009).

[6]    Harmsen, J., “Process intensification in the petrochemicals industry: Drivers and hurdles for commercial implementation”, Chem. Eng. Process., 49 (1), 70 (2010).

 

[7]    Schultz, M. A., Stewart, D. G., Harris, J. M., Rosenblum, S. P. and O'Brien, D. E., “Reduce costs with dividing-wall columns”, Chem. Eng. Prog., 98 (5), 64 (2002).

[8]    Becker, H., Godorr, S., Kreis, H. and Vaughan, J., “Partitioned distillation columns-why, when & how”, Chem. Eng., 108 (1), 68 (2001).

[9]    Dejanovic, Lj., Matijasevic, Z. Olujic., “Review Dividing Wall Column-A breakthrough towards sustainable distilling”, Chem. Eng. Process., 49 (6) 559, (2010).

[10]  Ramírez-Coronaa, N. B., Jimenez-Gutierreza., A., Castro-Agueroc., A. and Rico-Ramíreza., V., “Optimum design of Petlyuk and divided-wall distillation systems using a shortcut model”, Chem. Eng. Res. Des., 88, 1405 (2010).

[11]  Dunnebier., G. and Pantelides., C. C. “Optimal Design of Thermally Coupled  Distillation Columns”, Ind. Eng. Chem. Res.,  38 (1), 162 (1999).

[12]  Ling, H. and Luyben, W. L., “New control structure for divided-wall columns”, Ind. Eng. Chem. Res., 48, 6034 (2009).

[13]  Seider, W. D., Seader, J. D. and Lewin, D. R., “Product & Process Design Principles: Synthesis, Analysis and Evaluation”, 2nd ed., John Wiley, New York, (2003).