Applications of Waste Cooking Oil Other Than Biodiesel: A Review

Document Type: Full article

Authors

Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India

Abstract

Waste cooking oil (WCO) is being generated large scale all over the world; hence it has devised serious problems of its waste management. Organised collection of WCO in voluminous quantity is mainly used for the production of biodiesel. Most researchers focus primarily on the biodiesel generation from WCO, although other applications are also important and require attention. Objective of this review article is to highlight most of the aforementioned possible applications of WCO which may help in its utilization apart from biodiesel. It can be processed to obtain pyrolytic oil, hydrogen gas, biodiesel or electricity production by direct burning. Applications like combined heat and power generation (CHP) can utilize WCO with utmost efficiently. It can also be processed chemically to obtained biodegradable polyurethane sheets, greases, biolubricants, soaps and alkyd resins. Properly purified and sterilized WCO can be used as a carbon source in fermentation processes for the production of rhamnolipid biosurfactant and polyhydroxybutyrate (PHB). Waste cooking oil therefore can be considered as a potential waste which can be utilized as energy source and raw material for chemical or biological processes.

Keywords


[1]        Recep, A.  Selim, C.  and Huseyin, S. Y., "The potential of using vegetable oil fuels as fuel for diesel engines", Energy Conserv. Manag., 42 (5), 529 (2001).

[2]        Man, K. L. Keat, T. L. and Abdul, R. M., "Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review", Biotechnol. Adv., 28 (4), 500 (2010).

[3]        Mangesh, G. K. and Ajay, K. D., "Waste cooking oils an economical source for biodiesel: A review", Ind. Eng. Chem. Res., 45 (9), 2901 (2006).

[4]        Carlos, A. Guerrero, F. Andres, G. and Fabio, E. S., Biodiesel: Feedstocks and Process Technology, InTech, p. 23 (2011).

[5]        Refaat, A. A., "Different techniques for the production of biodiesel from waste vegetable oil", Int. J. Environ. Sci. Tech., 7 (1), 183 (2010).

[6]        Luostarinen, S. Luste, S. and Sillanpaa, M., "Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant", Bioresour. Tech., 100 (1), 79 (2009).

[7]        Diane Greer, "Recycling local waste oil and grease into biodiesel", http://www.ybiofuels.org/images/56July.pdf. (Accessed 12.08.2013).

[8]        Arjun, B. C. Chris, W. K. and Rafiqul, I. M., "Waste cooking oil as an alternate feedstock for biodiesel production", Energies, 1, 3 (2008).

[9]        Ganesh, L. M. Aniruddha, B. P. and Parag, R. G., "Intensification approaches for biodiesel synthesis from waste cooking oil: A Review", Ind. Eng. Chem. Res., 51 (45), 14610 (2012).

[10]      Hsiu-An, L. Euro. Pat. 2259216 A1, Giten Energy Manufacturing Company Ltd., (2010).

[11]      John, W. P., US Pat. 7735526 B2, Frontline International, Inc., (2010).

[12]      Ronald, L. D., US Pat. 005823097 A, (1998).

[13]      Wilfried, M. and Jean-Jaque, M., Euro. Pat. 1180492 B, Atuser SARL, Essi SAR, (2003).

[14]      Eldridge, J. S. and Enoch, E. O., US Pat. 5249511 A, Shumate Eldridge J, and Olsen Enoch E, (1993).

[15]      Knothe, G.  and Steidley, K. R., "A comparison of used cooking oils: A very heterogeneous feedstock for biodiesel", Bioresour. Tech., 100 (23), 5796 (2009).

[16]      Khalisanni, K. Khalizani, K., Rohani, M. S. and Khalid, P. O., "Analysis of waste cooking oil as raw material for biofuel production", Global J. Environ. Res., 2 (2), 81 (2008).

[17]      Bruinsma, M. and Bove, R., Euro. Pat. 2221611 A1, Testo AG, (2010).

[18]      Julia, K., David, C., Guillermo, Q., Salvador, G. and Miguel, G., "Direct determination of polymerised triacylglycerides in deep-frying vegetable oil by near infrared spectroscopy using Partial Least Squares regression", Food Chemistry, 131 (1), 353 (2012).

[19]      Marinova, E. M. Seizova, K. A. Totseva, I. R. Panayotova, S. S. Marekov, I. N. and Momchilova, S. M., "Oxidative changes in some vegetable oils during heating at frying temperature", Bulgarian Chem. Commun., 44 (1), 57 (2012).

[20]      Azmil, H. A. T. Keshavan, N. and Michael, G., "Physico-chemical changes occurring in oil when atmospheric frying is combined with post-frying vacuum application", Food Chemistry, 136 (2), 902 (2013).

[21]      Bernard, Robin, D. Gardner, and John, G., Euro. Pat. 0381355 A2, Filtercorp, Inc., (1990).

[22]      Pocknell, T. M. and Venni, A. K., US Pat. 20100313839 A1, Tony Michael Pocknell, Adrian Kurt Venni, (2010).

[23]      Dennis, R. T. and Kevin, P. G., US Pat. 4735815, Harshaw/Filtrol, (1988).

[24]      Ding, J. and Xia, Z. Lu. J., "Esterification and deacidification of a waste cooking oil (TAN 68.81 mg KOH/g) for biodiesel production", Energies, 5 (8), 2683 (2012).

[25]      Selvia, P. K. Sharmaa, M. and Kamyotra J. S., "Spent oil management and its recycling potential in India inventory and issues", Pro. Environ. Sci., 18, 742 (2013).

[26]      Rudolph, D., "The Diesel Oil Engine and Its Industrial Importance Particularly for Great Britain", J. Ame. Soc. Nav. Eng., 24 (1), 653 (1912).

[27]      Amit, S., Biodiesel: Production and Properties, RSC Publishing, p. 5 (2012).

[28]      Julia, K. David, C. Guillermo, Q. Salvador, G. and Miguel, G., "Direct determination of polymerised triacylglycerides in deep-frying vegetable oil by near infrared spectroscopy using Partial Least Squares regression", Food Chemistry, 131 (1), 353 (2012).

[29]      Wong, Y. W. Andrews, S. Wong, M. Euro. Pat. 2236022 A2, Yen Wen Wang, (2010).

[30]      Dandik, L. and Aksoy, H. A., "Pyrolysis of used sunflower oil in the presence of sodium carbonate by using fractionating pyrolysis reactor", Fuel Process. Technol. 57 (2), 81 (1998).

[31]      Francis, B. Julien, G. and Lucie, C., "Pyrolysis of secondary raw material from used frying oils", Recents progres en genie des Procedes, Numero, 94 (2), 1 (2007).

[32]      Singhabhandhu, A. and Tezuka, T., "Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion", Energy, 35 (4), 1839 (2010).

[33]      Czernik, S. and Bridgwater, A. V., "Overview of applications of biomass fast pyrolysis oil", Energy Fuels, 18 (2), 590 (2004).

[34]      Richard, J. F. and Stefan, C., "Hydrogen production by steam reforming of waste vegetable oils", Am. Chem. Soc., Div. Fuel Chem., 48 (2), 592 (2003).

[35]      Pimenidoua, P. Rickett, G. Dupont, G. and Twigg, M.V., "High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor", Bioresour. Tech., 101 (23), 9279 (2010).

[36]      Pimenidou, P. Rickett, G. Dupont, V. and Twigg, M. V., "Chemical looping reforming of waste cooking oil in packed bed reactor", Bioresour. Tech., 101 (16), 6389 (2010).

[37]      Merve, C. and Filiz, K., "A new application area for used cooking oil originated biodiesel:  generators", Energy Fuels, 19 (2), 645 (2005).

[38]      Gokhan, C. and Selim, K., "Increased yields in biodiesel production from used cooking oils by a two-step process: Comparison with one step process by using TGA", Fuel Process. Technol., 89 (2), 118 (2008).

[39]      Nikhil, G. and Virendra, K. R., "Enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate", J. Mol. Catal. B: Enz., 88, 36 (2013).

[40]      Ahmad, M. Asadolah, A. Shahin, R. and Elnaz, B. K., "Energy and cost analysis of biodiesel production from waste cooking oil", Renewable and sustainable energy reviews., 33, 44 (2014).

[41]      Mohammad, P. Farzane, Z. Amir, H. Z. Maryam, F. and Ghasem, N., "Esterification of Free Fatty Acids by Rhizopus oryzae as Cell-Catalyzed from Used Cooking Oil for Biodiesel Production", World Applied Sci. J., 8 (6), 719 (2010).

[42]      Dyneshwar, G. Aniruddha, B. P. and Virendra, K. R., "Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil", Ultrasonics Sonochem.,  20, 322 (2013).

[43]      Anilkumar, R. G. and Suraj, V. Y. Virendra, K. R., "Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound", Fuel, 158, 800 (2015).

[44]      Masatoshi, M. Seishiro, M., Euro. Pat. 1026224 A1, Markl, Herbert, Prof. Dr. Ing., (2000).

[45]      Bossche, A. V. D., Euro. Pat. 2014880 A1, Universiteit Gent, (2009).

[47]      Michele, B. and Andrea, D. P., "Emission calculation methodologies for CHP plants", Energy Procedia, 14, 1323 (2012).

[48]      "Vegawatt cogeneration system powers restaurants with waste vegetable oil", http://www.onsetcomp.com/learning/application_stories/vegawatt-cogeneration-system-powers-restaurants-waste-vegetable-oil sthash.Su6tgYFB.dpuf (accessed 03.07.2013).

[49]      Terry, L. B. and George, J. M., US Pat. 0031698 A1, O’brien and Gere Engineers Inc., (2009).

[5]        Bossche,V. D. and Alex, H., Euro. Pat. 2014880 A1, Universiteit Gent, (2009).

[51]      Thomas, V. T. and Cordova, T. N., US Pat. 0001957 A1, Phoenix Power Group, Llc., (2013).

[52]      Shiping, W. Wenjie, Z. Sang, Z. Zhenglong, J. and Dongsheng, Z., "Microbial conversion of waste cooking oil into Riboflavin by Ashbya gossypii", Biosci. J., 29 (4), 1000 (2013).

[53]      Nitschke, M. and Costa, S. G. V. A. O., "Biosurfactants in food industry", Trends in Food Sci. Technol., 18, 252 (2007).

[54]      Saharan, B. S. Sahu, R. K. and Sharma, D., "A review on biosurfactants: fermentation, current developments and perspectives", Genetic Eng. Biotechnol. J., 29, 1 (2011).

[55]      Verlinden, R. A. J. Hill, D. J. Kenward, M. A. Williams, C. D. Piotrowska, S. Z. and Radecka, I. K., "Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator", AMB Express Springer Open J., 1(11), 1 (2011).

[56]      Papanikolaou, S. Dimou, A. Fakas, S. Diamantopoulou, P. Philippoussis, A., Galiotou-Panayotou1, M. and Aggelis, G., "Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains", J. Appl. Microbiol., 110 (5), 1138 (2011).

[57]      Siddhartha, G. V. A. O. C. Francois, L. Sylvain, M. Eric, D. Marcia, N. and Jonas, C., "Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa", J. Ind. Microbiol. Biotechnol., 36 (8), 1063 (2009).

[58]      George, S. and Jayachandran, K., "Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D", J. Appl. Microbiol., 114 (2), 373 (2013).

[59]      Virgie, A. A. Irene, G. P. Jessica, F. S. and Rubio, M. L. D., "Substrate Dependent Production and Isolation of an Extracellular Biosurfactant from Saccharomyces cerevisiae 2031", Philippine J. Sci., 141 (1), 13 (2012).

[60]      Hanisah, K. Takeharu, T. Tajul, A. Y. and Kumar, S., "Waste cooking oil as substrate for biosynthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): Turning waste into a value-added product", Malays. J. Microbiol., 9 (1), 51 (2013).

[61]      Alberto, D. Francisco, J. D. Angeles, S. M. and Maria, A. L., "Biodegradation and utilization of waste cooking oil by Yarrowia lipolytica CECT 1240", Eur. J. Lipid Sci. Technol., 112 (11), 1200 (2010).

[62]      Alexandre, B. L. Valquiria, A. L. and Sonia, V. W. B. D. O., "Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol", Renew. Energy, 45, 138 (2012).

[63]      Banavali, R. M. Hanlon, R. T. and Schultz, A. K., Euro. Pat. 2159212 A1, Rohm and Haas Company, (2010).

[64]      Abdulbari, H. A. Rosli, M. Y. Abdurrahman, H. N. and Nizam M. K., "Lubricating grease from spent bleaching earth and waste cooking oil: Tribology properties", Int. J. Phys. Sci., 6 (20), 4695 (2011).

[65]      Chowdhury, A. Mitra, D. and Biswas, D., "Biolubricant synthesis from waste cooking oil via enzymatic hydrolysis followed by chemical esterification", J. Chem. Technol. Biotechnol., 88 (1), 139 (2013).

[66]      Norin, Z. B. Kassim, S. Tuan, N. M. B. Tuan, I. Hazimah, A. H. Ooi, T. L., Salmiah, A., US Pat.8501826 B2, Malaysian Palm Oil Board, (2007).

[67]      Srikumlaithong, S. Kuwaranancharoen, C. Asa, N., Recent Advances in Environmentally Compatible Polymers, Woodhead Publishing, p. 197 (2001).

[68]      Randal, L. S. Zoran, P. Zengshe, L. and Sevim, Z. E., "Biodegradation Behaviour of Some Vegetable Oil-based Polymers", J. Polym. Environ., 12 (3), 173 (2004).

[69]      Gregory, B. H. and Thomas, J. M., Wo. Pat. 087175 A2, Valspar Sourcing Inc, (2007).

[70]      Jayce, M., "Recycled cooking oils – their use in pig Feed, Primefact 978", http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/315636/Recycled-cooking-oils---their-use-in-pig-feed.pdf (accessed 05.06.2013).

[71]      Supple, B. Howard, H. R. Esther, G. G. and Leahy, J. J., "The effect of steam treating waste cooking oil on the yield of methyl ester", J. Ame. Oil Chem. Soc., 79 (2), 175 (2002).

[72]      "Waste cooking oil from catering premises", http://food.gov.uk/business-industry/guidancenotes/foodguid/wastecookingoil.Ugsuj5IweO4, (accessed 05.06.2013).

[73]      Zuojun, W. Xinghua, L. Thushara, D. and Yingxin, L., "Determinations and removal of malodialdihyde and other 2- thiobarbituric acid reactive substances in waste cooking oil", J. food eng., 107 (3), 379 (2011).

[74]      Kazuo, S. Kasukabe, J., US Pat. 5000870, Mimasu Oil Chemical Co., Ltd., (1989).

[75]      Kazuo, S., US Pat. 4839089, Mimasu Oil Chemical Co., Ltd., (1989).