Document Type : Regular Article

Authors

1 Uni sharif

2 Department of Chemical and Petroleum Engineering, Sharif University of Technology

3 School of Chemical Engineering, College of Engineering, University of Tehran

Abstract

 



Electrospun nanofiber is one of the promising alternatives for use in tissue engineering and drug delivery due to its controllable characteristics. However, choosing an appropriate biomaterial for a specific tissue regeneration plays a significant role in fabricating functional tissue-engineered constructs. Heart extracellular matrix (ECM)-derived electrospun nanofiber which mimic the physicochemical and structural characteristics of cardiac tissue is advantageous for cardiac tissue engineering. In this study, acellular calf heart ECM has been investigated as a potential biomaterial to be electrospun in a novel combination with poly vinyl pyrrolidone (PVP), gelatin (Gel) and polycaprolactone (PCL) for cardiac tissue engineering. The obtained fibers were aligned, uniform, and bead free. After fabrication, the scaffolds were cross-linked in glutaraldehyde vapor to become mechanically stronger and dissoluble in the aqueous environments. Considering surface topography, biocompatibility, hydrophilicity, and mechanical properties, the fabricated hybrid electrospun ECM/PVP/Gel/PCL fibers can be proposed as a biomimetic scaffold for heart tissue engineering applications.

Keywords

Main Subjects

[1] Vogt, L., Rivera, L. R., Liverani, L., Piegat, A., El Fray, M. and Boccaccini, A. R., “Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents”, Mater. Sci. Eng. C, 103, 109712 (2019).
[2] Mani, M. P., Jaganathan, S. K., Mohd Faudzi, A. A. and Sunar, M. S.,“Engineered electrospun polyurethane composite patch combined with bi-functional components rendering high strength for cardiac tissue engineering”, Polymers (Basel), 11 (4), 705 (2019).
[3] Qasim, M., Haq, F., Kang, M. -H. and Kim, J. -H., “3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration”, Int. J. Nanomedicine, 14, 1311 (2019).
[4] Pomeroy, J. E., Helfer, A. and Bursac, N., “Biomaterializing the promise of cardiac tissue engineering”, Biotechnol. Adv., 42, 107353 (2020).
[5] Bertuoli, P. T., Ordoño, J., Armelin, E., Pérez-Amodio, S., Baldissera, A. F., Ferreira, C. A., Puiggalí, J., Engel, E., Del Valle, L. J. and Aleman, C., “Electrospun conducting and biocompatible uniaxial and core–shell fibers having poly (lactic acid), poly (ethylene glycol), and polyaniline for cardiac tissue engineering”, ACS Omega, 4 (2), 3660 (2019).
[6] Burnstine‐Townley, A., Eshel, Y. and Amdursky, N., “Conductive scaffolds for cardiac and neuronal tissue engineering: Governing factors and mechanisms”, Adv. Funct. Mater., 30 (18), 1901369 (2019).
[7] Arumugam, R., Srinadhu, E. S., Subramanian, B. and Nallani, S., “β-PVDF based electrospun nanofibers–A promising material for developing cardiac patches”, Med. Hypotheses, 122, 31 (2019).
[8] Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A. P., Rofail, Hunter Smith, F., Wu, B. M., Shemin, R., Beygui, R. E. and MacLellan, W. R., "Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering", Biomaterials, 29 (19), 2907 (2008).
[9] Zhao, G., Zhang, X., Lu, T. J. and Xu, F., “Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering”, Adv. Funct. Mater., 25 (36), 5726 (2015).
[10] Han, J., Wu, Q., Xia, Y., Wagner, M. B. and Xu, C., “Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation”, Stem Cell Res., 16 (3), 740 (2016).
[11] Elamparithi, A., Punnoose, A. M., Paul, S. F. D. and Kuruvilla, S., “Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications”, Int. J. Polym. Mater. Polym. Biomater., 66 (1), 20 (2017).
[12] Orlova, Y., Magome, N., Liu, L., Chen, Y. and Agladze, K., “Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue”, Biomaterials, 32 (24), 5615 (2011).
[13] Kai, D., Prabhakaran, M. P., Jin, G. and Ramakrishna, S., “Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering”, J. Biomed. Mater. Res., Part B Appl. Biomater., 98B (2), 379 (2011).
[14] Yang, L., Xu, Y., Wang, Z., Wen, D., Zhang, W., Schmull, S., Li, H., Chen, Y. and Xue, S., “Electrospun nanofibrous sheets of collagen/ elastin/ polycaprolactone improve cardiac repair after myocardial infarction”, American Journal of Translational Research, 8 (4), 1678 (2016).
[15] Cho, S. J., Jung, S. M., Kang, M., Shin, H. S. and Youk, J. H., “Preparation ofhydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility”, Polymer (Guildf), 69, 95 (2015).
[16] Sanchez, P. L., Fernández-Santos, M. E., Costanza, S., Climent, A. M., Moscoso, I., Gonzalez-Nicolas, M. A., Sanz-Ruiz, R., Rodríguez, H., Kren, S. M., Garrido, G., Escalante, J. L., Bermejo, J., Elizaga, J., Menarguez, J., Yotti, R., del Villar, C. P., Espinosa, M. A., Guillem, M. S., Willerson, J. T., Bernad, A., Matesanz, R., Taylor, D. A. and Fernández-Avilés, F., “Acellular human heart matrix: A critical step toward whole heart grafts”, Biomaterials, 61, 279 (2015).
[17] Tamimi, M., Rajabi, S. and Pezeshki-Modaress, M., “Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application”, Int. J. Biol. Macromol., 164, 389 (2020).
[18] Haaf, F., Sanner, A. and Straub, F., “Polymers of N-vinylpyrrolidone: Synthesis, characterization and uses”, Polym. J., 17 (1), 143 (1985).
[19] Ignatova, M., Manolova, N. and Rashkov, I., “Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning”, Eur. Polym. J., 43 (4), 1112 (2007).
[20] Singelyn, J. M., De Quach, J. A., Seif-Naraghi, S. B., Littlefield, R. B., Schup-Magoffin, P. J. and Christman, K. L., “Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering”, Biomaterials, 30 (29), 5409 (2009).
[21] Guorui, J., He, R., Sha, B., Li, W., Qing, H., Teng, R. and Xu, F., "Electrospunthree-dimensional aligned nanofibrous scaffolds for tissue engineering", Materials Science and Engineering: C, 92, 995 (2018).
[22] Fleischer, S., Miller, J., Hurowitz, H., Shapira, A. and Dvir, T., “Effect of fiber diameter on the assembly of functional 3D cardiac patches”, Nanotechnology, 26 (29), 1002 (2015).
[23] Soleimani, M., Mashayekhan, Sh. and Ansarizadeh, M., “Design and fabrication of conductive nanofibrous scaffolds for neural tissue engineering : Process modeling via response surface methodology”, J. Biomater. Appl., 33 (5), 619 (2018).
[24] Chen, D., Lai, Y., Lee, S., Hung, S., Chen, H. and Al, C. E. T., “Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking”, J. Biomed. Mater. Res. Part A, 80 (2), 399 (2006).
[25] Dan, K., Wang, Q. -L., Wang, H. -J., Prabhakaran, M. P., Zhang, Y., Tan, Y. -Z. and Ramakrishna, S., “Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model”, Acta Biomaterialia, 10 (6), 2727 (2014).
[26] Dan, K., Prabhakaran, M. P., Jin, G. and Ramakrishna, S., “Polypyrrole-containedelectrospun conductive nanofibrous membranes for cardiac tissue engineering”, J. Biomed. Mater. Res.-Part A, 99 A (3), 376 (2011).
[27] Salles, T. H. C., Lombello, C. B., d’Ávila, M. A., Salles, T. H. C., Lombello, C. B. and d’Ávila, M. A., “Electrospinning of gelatin/poly (vinyl pyrrolidone) blends from water/acetic acid solutions”, Mater. Res., 18 (3), 509 (2015).
[28] Esmaeili Pourfarhangi, K., Mashayekhan, Sh., Ghanbari Asl, S. and Hajebrahimi, Z., “Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering”, Biologicals, 53, 10 (2020).
[29] Reid, J. A. and Callanan, A., “Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering”, J. Biomed. Mater. Res. Part B Appl Biomater., 108 (3), 910 (2020).
[30] Fujimoto, K. L., Tobita, K., Guan, J., Hashizume, R., Takanari, K., Alfieri, C. M. and Yutzey, W. R. W. E., “Placement of an elastic, biodegradable cardiac patch on a sub-acute infarcted heart leads to cellularization with early developmental cardiomyocyte characteristics”, J. Card Fail., 18 (7), 585 (2013).