Effect of electrokinetic on biodegradation of fluorene and phenanthrene in soil

Document Type: Research note

Authors

Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran

Abstract

Polycyclic aromatic hydrocarbons (PAH) are toxic, mutagenic, and carcinogenic compounds. Removal of these compounds has a great importance for environment. Removal of PAHs from soil is difficult as these chemicals are persistent in the soil. In this research, bioremediation of soil contaminated by (PAH) using Bacillus subtilis DSMZ 3256 (B.subtilis) strains was studied. The effect of electrokinetic on biodegradation of PAH was investigated. Fluorene and phenanthrene were selected as PAH and were mixed with soil. The bioremediation experiment was initially performed at 30oC and different humidities. The results represented 12.2 and 11.9% removal of fluorene and phenanthrene at 40% relative humidity after 7 days, respectively. The effects of electrokinetic on this process were studied at different current densities. It was found that the electrokinetic can reduce the biodesulfurization time. According to the results, the removal percents of fluorene and phenanthrene after 4 days under current density 1.82 mA/cm2 were 39.4 and 37.2, respectively.

Keywords


[1] Bamforth, S. M. and Singleton, L., "Review Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions", Chem. Technol. Biotechnol., 80, 723 (2005).

[2] Mrozik, A.  Piotrowska-Seget, Z. and Labuzek, S.," Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons", Polish J. Environ. Studies, 12, 15 (2003).

[3] Mackay, D. Shiu, W. Y. and Ma, K. C., "Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, V. II.", (1992) Lewis Boca Raton.

[4] Juhasz, A. L. and Naidu. R., "Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene", Int Biodeterior Biodegradation, 45, 57 (2000).

[5] Vidali, M., "Bioremediation An overview", Pure Appl. Chem., 73, 1163 (2001).

[6] Da Silva, M. Cerniglia, C. E. Pothuluri, J. V. Canhos, V. P. and Espoisto, E., "Screening Filamentous Fungi Isolated From Estuarine Sediments for Ability to Oxidize Polycyclic Aromatic Hydrocarbons", World J. Microbiol. Biotechnol., 19, 399 (2003).

[7] Meysami, P. and Baheri, H., "Pre-Screening of Fungi and Bulking Agents for Contaminated Soil Remediation", Adv. Environ. Res., 7, 881 (2003).

[8] Haritash, A. K. and Kaushik, C. P., "Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review", J Hazard Mater, 169, 1 (2009).

[9] Lu, X. Y. Zhang, T. and Fang, H. H. P, "Bacteria-mediated PAH degradation in soil and sediment", Appl. Microbiol. Biotechnol., 89, 1357 (2011).

[10] Weissenfels, W. D. Beyer, M. and Klein, J., "Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures", Appl. Microbiol. Biotechnol., 32, 479 (1990).

[11] Gennaro, D. Rescalli, P. Galli, E. Sello, G. and Bestetti, G., "Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil", Res. Microbiol., 152, 641 (2001).

[12] Desai, A. M. Autenrieth, R. L. Dimitriou-Christidis, P. and McDonald, T. J., "Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505", Biodegradation, 19, 223 (2008).

[13] Pumphrey, G. M. and Madsen, E. L., "Naphthalene metabolism and growth inhibition by naphthalene in Polaromonas naphthalenivorans strain CJ2", Microbiology, 153, 3730 (2007).

[14] Zhang, G. Y. Ling, J. Y. Sun, H. B. Luo, J. Fan, Y. Y. and Cui, Z. J., "Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11", J Hazard Mater., 172, 580 (2009).

[15] Zeinali, M. Vossoughi, M. and Ardestani, S. K., "Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism", Chemosphere, 72, 905 (2008).

[16] Annweiler, E. Richnow, H. H. Antranikian, G. Hebenbrock, S. Garms, C. Franke, S. Francke, W. and Michaelis, W., "Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans", Appl. Environ. Microbiol., 66, 518 (2000).

[17] Mohan, S. V. Kisa, T. Ohkuma, T. Kanaly, R. A. and Shimizu, Y., "Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency", Rev. Environ. Sci. Biotechnol., 5, 347 (2006).

[18] Kim, S. J. Park, J. Y. Lee, Y. J. Lee, J. Y. and Yang, J. W., "Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite", J.  Hazard. Mater. B. 118, 171 (2005).

[19] Deflaun, M. F. and Condee, C. W., "Electrokinetic transport of bacteria", J.  Hazard. Mater. 55, 263 (1997).

[20] Choi, J. H. Maruthamuthu, S. Lee, H. G. Ha, T. H. and Bae, J. H., "Nitrate removal by electro- bioremediation technology in Korean soil", J.  Hazard. Mater., 168, 1208 (2009).

[21] Park, S. W. Lee, J. Y. Yang, J. S.  Kim, K. J.  Baek, K., "Electrokinetic remediation of contaminated soil with waste lubricant oils and zinc", J.  Hazard. Mater., 169, 1168 (2009).

[22] Kim, S. H.  Han, H. Y.  Lee, Y. J. Kim, C. W. and Yang, J. W., "Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil", Sci. Total. Environ., 408, 3162 (2010).

[23] Asgari, M. Mokhtarani, B. Ataei, A. and Tabar Heidar, K.,"Effect of electrokinetic on bioremediation of disulfide oil contaminated soil", J. Oil Gas Petrochemical Technol., 1, 45 (2014).

[24] Wick, L. Y.  Shi, L. and Harms, H.," Electro-bioremediation of hydrophobic organic soil-contaminants: A review of fundamental interactions". Electrochim. Acta, 52, 3441 (2007).

[25] Shi, L. Muller, S. Harms, H. and Wick, L. Y. , "Effect of  electrokinetic transport on the vulnerability of PAH-degrading bacteria in a model aquifer", Environ. Geochem. Health2, 177 (2008).

[26] Shi, L. Muller, S. Harms, H. and Wick, L. Y., "Factors influencing the electrokinetic dispersion of PAH-degrading bacteria in a laboratory model aquifer", Appl. Microbiol. Biot.3, 507 (2008).

[27] Shi, L. Muller, S. Loffhagen, N. Harms, H. and Wick, L. Y. , "Activity and viability of polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. LB126  in a DC-electrical field typical for
electrobioremediation measures", Microb. Biotechnol.1, 53 (2008).

[28] Xu, W. Wang, C.  Liu, H. Zhang, Z. and Sun, H., "A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil", J. Hazard Mater., 184, 798 (2010).

[29] Boshagh, F. Mokhtarani, B. and Mortaheb, H. R., "Effect of electrokinetics on biodesulfurization of the model oil by Rhodococcus erythropolis PTCC1767 and Bacillus subtilis DSMZ 3256", J.  Hazard. Mater., 280, 781 (2014).

[30] Ito, T. Miyaji, T. Nakagawa, T. and Tomizuka, N., "Degradation of dimethyl disulfide by Peudomonas fluorescens strain 76", Biosci. Biotechnol. Biochem., 71, 366 (2007).

[31] Varon, E. J.  Peterson, L. R. , "diagnostic microbiology", Bailey & Scott’s, Mosby, USA, 1994.