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Abstract 

Utilization of membrane humidifiers is one of the methods commonly 

used to humidify reactant gases in polymer electrolyte membrane fuel 

cells. In this study, polymeric porous membranes with different 

compositions were prepared to be used in a membrane humidifier 

module and were employed in a humidification test. Three different 

neural network models were developed to investigate several 

parameters, such as casting solution composition and operating 

conditions, which have an impact on relative humidity of the exhausted 

air after humidification process. The three mentioned models included 

Feed-Forward Back-Propagation (FBP), Radial Basis Function 

(RBF), and Feed-Forward Genetic Algorithm (FFGA). The models 

were verified by experimental data. The results showed that the feed-

forward models, especially FFGA, were suitable for this type of 

membrane humidifiers.  
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1. Introduction 

Nowadays, the application of membrane 

processes in laboratories and industries has 

received much attention and many studies 

have been conducted on this subject. Among 

these processes, membrane contactors are of 

great importance [1]. The membrane 

contactors were first applied for dissolving 

oxygen in blood in the 1970s [2]. Later, the 

membrane contactors were applied in many 

different fields such as natural gas 

purification, humidity control, and organic 

gases elimination [3].  In a membrane 

contactor, membrane acts as a media between 

gas and liquid phases and can be used to 

solve many problems in the fields of food 

and pharmaceutical industries, foaming, 

entraining and channeling industries [4]. 

As one of the applications of the 

membrane contactors, they are used in 

humidifiers that are employed in Polymer 

Electrolyte Membrane Fuel Cells 

(PEMFC). In these fuel cells the electrolyte 

is composed of a polymeric membrane with 

the ability to conduct H+; to have a good 

performance, this membrane must be 

wetted. Perfluorosulfonate membranes are 

usually utilized in the PEMFCs and their 

proton conductivity is reduced by 

decreasing the water content of membrane 

[5]. Membrane humidification is affected 

by water transfer phenomena in the 

membrane and is associated with the 

condition of reactant gases and operating 

parameters of the fuel cell. Therefore, the 

water content in the electrolyte can be 

controlled via determining the condition of 

inlet gases. There are different ways to 

humidify reactant gases; however, the 

membrane humidifiers are preferred 

because they occupy a small space, 

consume low amounts of energy, and have 

a good performance. 

In a membrane humidifier, dry gas 

passes one side of the membrane while 

liquid water or water vapor passes the other 

side. Because of the chemical potential 

gradient, water passes the membrane from 

wet to dry stream, and reactant gas will be 

humidified. Chen et al. [6], investigated the 

behavior of a membrane humidifier in 

dynamic and static states and developed a 

thermodynamic model in their study. The 

results obtained in the static state showed 

that the water vapor transfer rate increased 

with an increase in water channel 

temperature, gas channel temperature, and 

gas flow rate. Since water channel pressure 

had an insignificant effect, the researchers 

ignored it in the modeling. [7] studied a 

membrane humidifier, utilizing Nafion 

membranes. They introduced a one-

dimensional analytical model for measuring 

humidification capacity of the Nafion 

membrane humidifiers. Their model 

predicted the humidity content as a 

function of length and height of gas 

channel that was consistent with the 

experimental data. In another study, Choe 

et al. developed a mathematical model for 

Nafion shell and tube membrane 

humidifiers [8]. The model was designed 

for gas to gas humidifiers and included 

geometrical and operational parameters 

based on thermodynamic principles. 

Merida et al. conducted experiments on a 

commercial humidifier with a porous 

membrane and analyzed experimental data 

under a model for heat and mass transfer 

[9].  
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Artificial neural networks are applied for 

several membrane processes [10-16]. 

Shokrian et al. [15] utilized a multilayer 

perceptron (MLP) that was trained by 

Levenberg–Marquardt back propagation 

method to predict the separation factor of 

C3H8 for different inputs of training 

experimental data. Shahsavand and Chenar 

[13] compared the performance of two 

different Radial Basis Function (RBF) and 

MLP networks for prediction of hollow 

fiber permeances and the corresponding 

separation factors. Chakraborty et al. [10]  

studied the application of neural networks 

for prediction of solute concentration in 

feed during extraction operation and its 

ultimate extraction percentage. In recent 

studies about the membrane humidifiers, 

there has been no focus on membrane 

synthesis and its parameters. Previous 

studies have investigated commercial 

membranes through utilizing 

thermodynamic modeling. This study 

focuses on the preparation of porous 

membranes and it aims to introduce a 

suitable neural network model for 

investigating the effects of preparation 

factors and operational conditions on 

humidification process. The numerical 

model was also verified using the 

experimental data reported in the previous 

study [17]. 

 

2. Experimental setup 

2-1. Membrane preparation method 

The membranes were prepared via wet phase 

inversion process. For this purpose, casting 

solutions were prepared with different 

compositions of polymer in N-methyl-2-

pyrrolidone (NMP) and Dimethylformamide 

(DMF) solvents. For synthesis of the nano-

composite membranes, titanium dioxide 

nano-particles were used. After mixing the 

solutions for 24 h with a magnet stirrer, the 

casting solution was dispersed on a glass 

support using a casting machine at room 

temperature. Then, the polymer films were 

floated in a coagulation bath containing 

deionized water and remained there until the 

inversion process phase was completed. 

Different structures of membrane cavities 

from finger type to sponge like structures 

were observed. Also, adding TiO2 

nanoparticles enhanced the humidification 

due to increase in the membrane 

hydrophilicity. 

 

2-2. Humidification test 

Fig. 1 shows the humidification setup for 

measuring relative humidity (RH) of the 

outlet gas and the humidification 

membrane module, respectively. Membrane 

module was assembled using a membrane 

with two different flow fields for the dry 

air gas and the liquid water. Pressure, 

temperature, and flow rate of gas and water 

were controlled in the system and gas RH 

was measured by a humidity indicator 

(Lutron HT-315). Because the membranes 

were porous, the pressure was constant and 

equal on both sides of the membrane and 

water transfer occurred due to the 

difference in chemical potentials. Hence, 

the flow rate of water was very low and the 

main concerns on waterside were presence 

of water at a specific pressure and 

temperature that were indicated in each 

experiment. The temperature was fixed in 
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the system by a water bath equipped with a 

temperature controller and a mechanical 

mixer. The gas flow field was a serpentine 

channel with a specific length, 5 mm width, 

and 6 mm of surface contact with the 

membrane. The effective surface of the 

membrane in the module was 5676 mm2. 

The water flow field was a simple container 

with a reticular plate to hold the membrane. 

By using this apparatus, it was possible to 

investigate the effects of the operating 

conditions and the membrane synthesis 

parameters on humidification. Composition 

of casting solution was an important factor 

affecting the shape, position, and 

orientation of the formed cavities, which 

have certain effects on humidification 

performance. The RH decreased by 

increasing the gas flow rate, the flow 

channel pressure, and the module 

temperature. A total of 69 membranes were 

prepared and the experimental data were 

recorded as Table 1. Also, mechanical 

characteristics of the fabricated membranes 

are reported in Table 2. For more details on 

membrane characterization, the reader is 

referred to [17].  

 

      Table 1  

      Experimental data of the humidification set-up. 
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1 PES DMF 16 50 1 60 29.94 68.30 36 PSU DMF 7 50 1 180 32.65 67.55 

2 PES DMF 16 50 1 120 30.22 67.66 37 PSU DMF 16 50 1 60 34.00 85.65 

3 PES DMF 16 50 1 180 29.94 62.70 38 PSU DMF 16 50 1 120 32.17 77.55 

4 PES DMF 16 50 2 60 30.02 60.25 39 PSU DMF 16 50 1 180 32.65 70.72 

5 PES DMF 16 50 3 60 30.27 43.05 40 PSU DMF 16 50 2 60 33.70 72.52 

6 PES DMF 10 50 1 60 30.53 74.49 41 PSU DMF 16 50 3 60 33.50 68.52 

7 PES DMF 10 50 1 120 30.57 73.62 42 PSU DMF 16 60 1 60 32.01 70.66 

8 PES DMF 10 50 1 180 30.44 67.60 43 PSU DMF 16 60 1 120 31.59 65.83 

9 PES DMF 10 50 1 300 29.57 66.15 44 PSU DMF 16 60 1 180 31.60 62.75 

10 PES DMF 10 50 2 60 29.80 71.68 45 PSU DMF 16 60 1 300 30.20 62.70 

11 PES DMF 10 50 3 60 29.96 70.50 46 PSU DMF 16 60 2 60 31.40 60.96 

12 PES DMF 7 50 1 60 31.51 70.04 47 PSU DMF 16 200 1 60 31.72 56.50 

13 PES DMF 7 50 1 120 31.24 64.96 48 PSU DMF 16 200 1 120 31.00 59.41 

14 PES DMF 7 50 1 180 32.32 63.09 49 PSU DMF 16 200 1 180 31.12 51.53 

15 PES DMF 7 50 2 60 32.12 57.28 50 PSU DMF 16 200 1 300 30.62 51.96 

16 PES DMF 7 50 3 60 31.40 64.00 51 PES DMF 16 50 1 60 32.25 75.30 

17 PES DMF 10 100 1 60 30.97 53.50 52 PES DMF 16 50 1 120 32.22 73.60 

18 PES DMF 10 100 1 120 30.95 47.10 53 PES DMF 16 50 1 180 32.32 65.80 

19 PES DMF 10 100 1 180 30.97 46.30 54 PSU NMP 16 50 1 60 32.00 79.87 

20 PES DMF 10 100 1 300 30.90 45.98 55 PES NMP 16 50 1 60 32.00 76.00 
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21 PES DMF 10 100 2 60 31.08 39.80 56 PES NMP 16 50 1 60 32.00 81.00 

22 PES DMF 16 100 1 60 30.59 46.53 57 PES NMP 16 50 1 60 32.50 76.31 

23 PES DMF 16 100 1 120 30.62 45.45 58 PES NMP 16 50 1 120 32.60 75.42 

24 PES DMF 16 100 1 180 30.51 44.36 59 PES NMP 16 50 1 180 31.77 67.70 

25 PES DMF 16 100 2 60 30.64 39.44 60 PES NMP 16 50 2 60 31.80 75.51 

26 PES DMF 16 100 3 60 30.54 33.46 61 PES NMP 16 50 2 120 32.00 63.85 

27 PSU DMF 16 50 1 60 31.00 75.00 62 PES NMP 16 50 2 180 32.00 61.69 

28 PSU DMF 10 50 1 60 32.86 76.60 63 PES NMP 16 50 3 60 31.87 72.50 

29 PSU DMF 10 50 1 120 32.87 70.67 64 PES NMP 16 50 1 60 31.65 71.28 

30 PSU DMF 10 50 1 180 32.75 60.57 65 PES NMP 16 50 1 120 30.86 70.39 

31 PSU DMF 10 50 1 300 31.08 64.11 66 PES NMP 16 50 1 180 30.09 64.51 

32 PSU DMF 10 50 2 60 32.97 69.92 67 PES NMP 16 50 1 240 30.00 63.54 

33 PSU DMF 10 50 3 60 33.12 63.43 68 PES NMP 16 50 2 60 29.97 71.15 

34 PSU DMF 7 50 1 60 32.50 73.51 69 PES NMP 16 50 3 60 29.90 70.78 

35 PSU DMF 7 50 1 120 32.22 70.68 - 
        

 

 Table 2  

 Mechanical characteristics of the fabricated polymer membranes.  

TENS. 

STIFF. 

(kN/m) 

Tensile Energy 

Absorption 

(J/m2) 

Strain 

Break 

(%) 

Tensile 

Strength 

(N/m) 

T (℃) 
Polymer 

% 
Solvent Polymer 

36.15 84.08 9.72 679.5 8.0 20.0 NMP PSU 

55.90 211.12 22.02 1.06 8.0 20.0 DMF PSU 

29.95 85.25 16.45 620.0 25.0 20.0 NMP PSU 

53.65 93.39 10.56 1.03 25.0 20.0 DMF PSU 

33.70 150.84 22.94 767.0 57.0 20.0 DMF PSU 

2.20 58.43 19.95 345.0 25.0 16.0 NMP PSU 

29.80 99.50 20.42 571.0 25.0 16.0 DMF PSU 

35.60 27.94 10.17 325.0 25.0 0.1-16.0 DMF PSU 

26.12 41.78 12.33 403.0 25.0 0.1-16.0 DMF PSU 

31.70 25.80 9.04 341.33 25.0 16.0 DMF PES 

31.43 55.39 14.66 352.30 25.0 16.0 DMF PES 

33.73 29.61 11.71 312.33 25.0 16.0 NMP PES 
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Figure 1. The experimental humidification setup. 

 

3. Neural network modeling 

Artificial neural networks (ANNs) are 

directly inspired by the structure of the 

human brain, where billions of neurons are 

interconnected to process a variety of 

complex information including inputs and 

targets. Neural networks learn from 

experience and generalize from previous 

examples. They modify their behavior in 

response to the environment and are ideal in 

cases where the required mapping algorithm 

is not known or is too complex. A neural 

network consists of a number of simple 

processing elements called neurons. Each 

neuron in the neural network is connected to 

the others by means of direct links called 

synapse. Each synapse is associated with a 

parameter called weight. The neural 

networks are utilized to model the nonlinear 

relationship between inputs and outputs in an 

experimental process. In general, a neural 

network is a parallel-interconnected structure 

consisted of: (1) an input layer of the neuron, 

(2) a number of hidden layers, (3) and an 

output layer. A schematic view of a 

multilayer feed forward neural network is 

shown in Fig. 2. There are several types of 

networks and training algorithms; moreover, 

transfer functions can be applied for training 

and modeling the experimental system. The 

number of neurons in the input and output 

layers is determined by the nature of the 

problem. The hidden network consists of one 

or more layers, with several neurons in each 

layer. The hidden layers act like feature 

detectors in a black box [11,13-16]. 
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Figure 2. Schematic view of a feed forward neural network structure. 

 

3-1. Neural network structure 

The topology of an artificial neural network 

(ANN) is determined by the number of layers 

in the hidden network, the number of the 

neurons in each layer, and the nature of the 

transfer functions. Optimization of the NN 

topology is probably the most important step 

in the development of a model. In the present 

work, three different networks were created 

and trained for modeling the existing data. 

The first network was a Feed-Forward Back 

Propagation (FBP) neural network with a 

hidden layer including 5 neurons which were 

trained using trainlm training function. The 

second network was a Radial Basis Function 

(RBF) network, and the third one was similar 

to the first network except for the 

optimization process, which was done using 

Genetic Algorithm (GA).  

3-2. Input data for the neural network 

model 

Input variables for the network were as 

follow: (1,2) composition and material of 

polymeric membrane, (3) membrane 

thickness, (4) operating pressure, and (5) 

flow rate of input dry air. The output of the 

network was the RH percentage in the air 

after humidification process. The effective 

parameters are demonstrated in Table 3. The 

experimental data include the results of the 

mentioned 69 experiments listed in Table 1. 

The data were normalized and divided to two 

parts of 54 training data and 15 unseen test 

data. The training data were used for training 

of the neural networks and the testing data 

were employed for validation of the 

performance of the trained networks.

 

Table 3 

 Effective parameters of polymer synthesis. 

Synthesis parameters Operating parameters 

Polymer Solvent 
Polymer weight 

(%) 

Membrane 

thickness (µm) 

Flow rate 

(L/h) 

Pressure 

(bar) 

Temperature 

(ºC) 

PSU 

PES 

NMP 

DMF 
7, 10, 16, 20 50, 100, 200 

60, 120, 180, 

300 
1, 2, 3 25, 70 
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4. Results and discussion 

In the first step, the set of input data that 

were unseen to the network were entered to 

the trained networks and the predicted 

outputs of RHs were obtained and reported. 

The results are compared in Figs. 3-6. The 

comparison criterion was the Relative Mean 

Square Error (RMSE). 
 

RMSE = √1

N
(
RHnet−RHexp

RHexp
)
2

                        (1) 

 

Where N is the number of input sets of 

data, RHnet is the predicted output, and RHexp 

is the corresponding actual output. 

 

4-1. FBP network trained using trainlm 

algorithm 

This was a feed forward network with two 

layers. Five input neurons were connected to 

the first layer that was the hidden layer with 

5 neurons inside; the next layer was output 

layer with one neuron which was used to 

calculate the output RH of the module. The 

network was trained using Levenberg-

Marquardt (trainlm) back propagation 

algorithm. After training the network using 

the experimental data, corresponding outputs 

of 15 unseen inputs were predicted by the 

network. Results are shown in Fig. 3. As 

illustrated in Fig. 3, in comparison with the 

experimental data, most of the predicted 

outputs had little tolerance. 

 

 
Figure 3. Test of unseen data by FBP network. 

 

4-2. RBF network 

The RBF network was trained using the 

experimental data and the output data were 

compared with the actual values as well.  The 

RBF network had two layers. The first layer 

had 100 radial basis neurons. The second 

layer had one neuron with purelin transfer 

function. The predicted and experimental 

RHs are shown in Fig. 4. As shown, 

compared with the first network, outputs 

were not fitted well. 
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Figure 4. Test of unseen data by the RBF network. 

 

4-3. FF network trained by GA 

This was a feed forward network just like the 

first one, except for the training algorithm, 

which was not trainlm. Weights and biases of 

this network were adapted using the genetic 

algorithm. The predicted outputs 

corresponding to the unseen inputs in 

addition to the actual outputs of the module 

are illustrated in Fig. 5. 

 

 
Figure 5. Test of unseen data by the FF network trained by the GA. 

 

The RMSEs for the three networks, with 

different structures and training algorithms, 

are shown in Fig. 6. As shown, overall the 

RMSE of the FFGA was less than the two 

other networks. While some of the results of 

the first network were similar to those of the 

experimental data, however, the total error 

for the third network was lower than the 

FBP. Therefore, compared with the first and 

the second networks mentioned before, 

training of the feed forward neural network 

utilizing the GA was more effective and the 

results were better.  

As shown in Fig. 6, the RMSE of the RBF 

was significantly more than that of the FBP 

and the FFGA. Although the number of 

neurons in RBF network was more than that 

in the two other networks (100 neurons in 
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comparison with 5 neurons), its total error 

was high. Thus, the radial basis transfer 

function was not suitable for membrane 

humidifier modeling. 

 

 
Figure 6. Performance of the neural networks. 

 

5. Conclusions 

The three different neural networks (FBP, 

RBF, and FFGA) were applied to predict the 

behavior of the polymer membrane 

humidifier using the porous membranes. The 

RMSE was 0.0418 for the FBP network 

which had 5 neurons with tansig transfer 

function in the hidden layer and it was 

trained by the Levenberg-Marquardt back 

propagation algorithm. The error of the RBF 

network with 100 radial basis neurons was 

0.0691. The FFGA network had a structure 

just like the structure of the FBP. It was 

trained by genetic algorithm instead of back 

propagation. The RMSE of this network was 

0.0387. Among the networks, the FFGA 

network showed better results. Therefore, the 

FFGA neural network model is a promising 

procedure to be used in future for modeling 

membrane humidifiers. The FFGA network 

showed better results, and had less number of 

neurons compared with the RBF; in addition, 

it had a lower RMSE than the FBP. On the 

other hand, the required time for training the 

network with genetic algorithm was 

considerably more than the others. Therefore, 

for feasibility study, experimental data can be 

modeled using the FBP and the final network 

can be trained by the FFGA, because of its 

lower total error. 

 

                           Abbreviations 

ANN Artificial Neural Networks 

DMF Dimethylformamide 

FBP Feed-Forward Back-Propagation 

FF Feed-Forward 

FFGA Feed-Forward Genetic Algorithm 

GA Genetic Algorithm 

MLP Multilayer Perceptron 

NN Neural Networks 

NMP N-methyl-2-pyrrolidone 

PEMFC 
Polymer Electrolyte Membrane 

Fuel Cells 

RBF Radial Basis Function 

RH Relative Humidity 

RMSE Relative Mean Square Error 
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