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Abstract

In this work, computational fluid dynamics of the flow behavior in a cold flow of
fluidized bed is studied. An improved finite volume based finite element method has
been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This
method uses a collocated grid, where all variables are located at the nodal points. The
fluid dynamic model for gas/solid two-phase flow is based on the two-fluid model where
both phases are continues and fully interpenetrating. For the gas and solid phases the
Navier-Stokes equation based on the concept of local average is obtained. Results are
verified against experimental data reported in the literature.
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Introduction

The subject of gas/solid flows has been
studied quite extensively for several decades,
mainly because of its important applications
in chemical and petroleum industries such as
pneumatic transport, catalytic cracking, and
coal combustors. Gas/Solid flow systems are
an essential part of many chemical processes
and an understanding of the behavior of such
flow systems can significantly enhance the
design of such processes.

A gas fluidized bed is observed when a gas
continuously flows through a bed of particles
at an appropriate flow rate. The particles
which are initially at rest, driven by the fluid
drag force and the inter-particle forces from
neighboring particles, start to move and
exhibit complex and intriguing flow patterns,

which in turn greatly affect the flow of the
fluidized gas [1]. Gas/solid fluidized bed
hydrodynamic behavior is complex and not
yet fully understood. Especially the scale-up
from laboratory to industrial scale is a
problem. Equations describing the bubble
behavior in gas/solid fluidized beds are
(semi) empirical and often determined under
laboratory conditions. For that reason there is
no unique theory describing the behavior of
bubbles in fluidized beds.

In the so-called “two fluid model’’ both
phases are considered to be continuous and
fully interpenetrating. Both phases are
described in terms of separate conservation
equations with appropriate interaction terms
representing the coupling between the
phases. All the particles are assumed to be
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identical, characterized by a density, form
factor and a coefficient of restitution. The
motion of a system of solid particles sus-
pended in a Newtonian fluid can be com-
pletely described by the Navier-Stokes equa-
tions. Specification of the proper initial and
boundary conditions would enable the deter-
mination of the hydrodynamics of the flui-
dized beds.

In recent years computational fluid dynamics
(CFD) in multiphase flow has become a well
accepted and useful tool in modeling gas/
solid flow systems and much progress has
been made in developing computer codes for
describing the fluidized beds. Although the
tools for applying single-phase flows in CFD
are widely available, application of multi-
phase CFD is however still complicated from
both the physical and the numerical point of
view. Moreover, the research efforts of most
groups in this field are aimed at the develop-
ment of still more detailed CFD models for
the two-phase flow. Most of the developed
models are based on a two - phase flow
description - one gas and one solid phase. In
the discrete solution of the convection and
the diffusion problems, control volume based
finite element methods are popular. One
reason for this is that the methods combine
the intrinsic geometric flexibility of finite
element methods with the desirable, direct
physical invocation of a conservation prin-
ciple to clearly identify and delineate the
control volume comprising the domain.

Here we have developed a new formulation
of the control volume based finite element
(CVBFE) method that has used the momen-
tum equation implicitly. In this study, im-
proved CVBFE has been applied to study the
bed hydrodynamic behavior in a two-dime-
nsional Cartesian cold flow in the riser
section of a fluidized bed reactor.

Gas-Solid Two Phase Flow Model

The first step in the fundamental unders-
tanding of fluidization is usually attributed to
Davidson [2] for his analysis of a single
bubble motion in an infinite fluid bed. The
Davidson model has been further developed
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by others.

Since there are a variety of such models it is
convenient to catalog them as classical
models [2, 3, and 4], dimensional analysis
(scaling) [5, 6, 7] and hydrodynamic models
[8, 9, 10]. Dimensional models were used to
correlate and scale hydrodynamic pheno-
mena in fluidization. Hydrodynamic models
are used to predict the hydrodynamics of the
fluidized bed. Numerical schemes based on
mathematical models of separated particulate
multiphase flow have used the continuum
approach for all the phases or a continuum
approach for the fluid phase and a lagrangian
approach for the particle.
Continuum-continuum (or Eulerian-Eulerian)
approach considers the particulate phase to
be a continuous fluid interpenetrating and
interacting with the fluid phase [11].

From a macroscopic viewpoint the solid
phase in a gas-solid fluidization system
behaves like a kind of fluid, thus most
numerical simulations of fluidized beds
assume that the solid phase is a continuum.
For this reason, most models reported in the
literature are based on a two-fluid model
(TFM). In the TFM, both phases are con-
sidered to be continuous and fully inter-
penetrating. Anderson and Jackson [12] and
Pritchett [13] first proposed the TFM. The
proposed models have zero gas and solid
viscosities. These models successfully pre-
dict physical behavior dominated by the drag
between the solid phase and the gas phase,
like the formation of bubbles at a single
orifice. Gidaspow [10] reviewed three hydro-
dynamic models of fluidization and has
shown that these models, with zero gas and
solid viscosity, were able to predict a great
deal of the behavior of bubbling beds,
because the dominant mechanism of energy
dissipation is the drag between the particles
and the fluid. To overcome the deficiency of
these inviscid models, for instance, predict-
tion of the force on tubes, a solid viscosity
was added to the model [14]. The derivation
of the continuum equations is usually based
on the scale of particle size that were
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replaced by local averaged variable which
describe the macroscopic system of interest
[15, 16].

There is extensive literature dealing with the
derivation of continuum equations for
multiphase systems and a number of con-
tinuum models have been proposed [12, 13].
Pritchett [13], using an implicit finite
difference procedure, was the first to obtain
the numerical solutions of the full nonlinear
continuum equations. Gidaspow [10] pro-
posed a numerical model of a fluidized bed in
which a numerical solution to the con-tinuum
equations was developed for the analysis

a(spgu)
ot

Solid-phase momentum:

A= 1) )=+ flu—v) -V ]V, <1<

ot

of bed hydrodynamics. Both phases were
described in terms of separated con-version
equations (Navier-Stokes type) with ap-
propriate interaction terms represent-ting the
coupling between the two phases. Viscous
interaction forces for both phases were
neglected in their code. Kuippers [15]
proposed an improvement to the above
models. This model differs from the previous
work, in the incorporation of a Newtonian
rheological model in the gas and solid phases
and arrives at an excellent agreement with
direct experimental results.

Governing Equations

In the TFM two sets of conservations are
formulated, governing the balance of mass,
momentum and thermal energy in each
phase. Since the averaged fields of one phase
are dependent on the other phase, interaction
terms appear in the balance equations. These
terms represent the momentum and energy
transfer between the phases. For cold flow
the thermal energy equation is neglected and
thus we have:
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Continuity Equation

Gas-phase continuity:
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Solid-phase continuity:
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Where & is the volume fraction of each
phase, u, v are fluid phase and solid phase
velocity vectors respectively, p is the density,
T is the viscous stress tensor, g is the gravity
acceleration, p is the pressure, f is the
interphase momentum transfer coefficient, Py
is the solids pressure. The conservation
equations in a two dimensional rectangular
coordinate for the transport of a property ¢
can be written in a general form [17]:

I:a(pa+‘:l¢)+ V‘(pigivi¢)_ V.(Sir¢v¢)= S¢}
(5)

Constitutive Equations

In order to solve the gas-solid conservation,
the constitutive equations for gas/solid
density, interphase momentum transfer
coefficient, viscous stress tensor are required.
The gas flow is cold and the fluid density p,

is related to the pressure by the ideal gas law.
The other properties of the gas phase and the
particle density p, are set as a constant value.
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For £ <0.8 the gas-solid interphase momen-tum transport coefficient is based on the wellknown Ergun
equation:

Pg
(¢,dp)

B =150 (1—‘9)2 H,

& (¢,dp)

~+1.75(1-¢) ju —v| (6)

Fore > 0.8, the gas-solid interphase momentum transfer coefficient is based on the single sphere
expressions derived by Wen and Yu [18]:

3y el-e) 7
p=cd (¢Sdp)pg| 1/ (&) 7

fle)=e72" (8)

Here Cd is the drag coefficient; dp is particle diameter and ¢, is a measure of the sphericity. The

relation given in Eq. (8) acts as a correction to the Stokes law for the free fall of a single particle
and is introduced to account for the presence of other particles in the fluid [19]. The drag
coefficient Cd is related to the particle Reynolds number:

24
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The fluid and solid viscous stress tensors are given by an expression analogous to the Newtonian
fluid [12]. That is

. _{[h _iﬂgj(v.u)E N ﬂg[(v“)+(w)f]}
. - —{(/15 —%,us)(v.v)E v ulve)e (vV)f]}

(11)

Where E is the Kronecker delta, A, and A
denote the bulk viscosities, L, and pg denote
the shear viscosities of the gas and the solid
phases respectively [20].

The solid phase pressure or particle-to-
particle interaction force (VP,) is added to
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the momentum equation to make the system
numerically stable [21] and, thus, to prevent
the particle void fraction from reaching low
values [10, 19].

Ps depends only on the porosity. The solid
phase elastic modulus G (€) defined by:
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d
G@Fﬁ% (12)

By applying the chain rule the gradient of the
solid phase pressure can be written as [15,
16]:

VP, =G(¢)Ve (13)

Gidaspow and Ettehadieh [19] and Ding [22]
proposed an expression for the solid elastic
modulus:

G (g): C;Pgs _ 10 8.76 £ -0.27 dyne /Cn’l 2
(14)

Numerical Method

The set of conservation equations, sup-
plemented by the constitutive equations and
the initial and boundary conditions, cannot be
solved analytically and therefore a nume-rical
method must be used. The numerical

(b)

Figure 1. (a) typical element; (b) element with
integration point, sub-control volumes and Subsurface
labeled
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method used in the present investigation is an
improved finite volume based finite element
method [23]. This method uses a collocated
grid, in which all variables are located at the
nodal points. To prevent pressure checker-
board, the objective of this method is to
couple between velocity and pressure or
porosity in the continuity equation. For this
reason we use two types of velocity, convec-
ting velocity and convected velocity (27).
Rhie and Chow [24] were the first to use a
collocated variable arrangement in the
control volume based finite element method.
Schneider and Raw [25, 26] introduced the
concept of integration point equations in the
incompressible flows to include the effects of
the fluid flow physics on the integration point
variable, thus improving the accuracy.

Geometric Preliminaries

A typical element is shown in Figure 1a with
a local non-orthogonal (s, t) coordinate
system included. The sub-control-volume
(SCV) boundaries are defined by the element
external surfaces and lines corresponding to
the local coordinate values of s=0 and of t=0.
The four SCV surrounding the node then will
form a control volume as shown in Figure 1b.
The bilinear interpolation applied to describe
the distribution of variables in the element is:

6= Ni(s,0)®, (15)
i1

When derivatives are required, they can be
evaluated according to

o ¢ £ 0N ,(s,t)
0x ,Zzll 0x ’ (16)

aNi(S’t)q)i (17)
1 0y
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In the control volume based finite element
method (CVBFE) for the conservation
balance of a conserved quantity; we have to
evaluate some surface and volume integrals
on the control volume. For this, governing
equations are discretized on an element by
integration on the four SCV’s and form the
element matrix. Then discretized equation for
each unknown on each node will form on
element by element assembly process. For

by integration points (ip).

Discretization

In an incompressible flow, density is
independent of temperature and thus the
continuity equation and momentum equa-
tions are decoupled from the energy equation,
thus we can solve continuity and momentum
equations individually.

In CVBFE method at first step we integrate

governing equations on control volume.
Applying the Gauss theorem we have

surface integration the argument of integral
will be required at the midpoint of the SCV’s
line segments. These points will be denoted

L[ ppav v [pugas,— [ Las — [s5, =0
b by j s | i=1,2 (18)

sev

For the transient term of the equation, a “lump mass approach” is employed. For constant p, a
backward difference gives

}[w o] (19)

aa—t;[jl/w v~ {Al_t” p |J |dsdt

S sev

The diffusion term at the integration point is represented by

o¢
W|,~plAy1 - T

ip 1

5_¢|I_NM1 (20)
dy

jz ip 1
dx

in which the gradient components can be evaluated by using the usual bilinear shape function
expressions.

For the discretization of the convection terms, convected and convecting velocity, must be
evaluated in integration points. As the nature of the convection operator is parabolic we need to
consider it in descretization to achieve stable and accurate results. The parabolic nature of
convection terms does suggest that it is indeed highly desirable not only to upwind the
convection operator, but also that this operator be skewed to reflect the local information
propagation, this being along the local streamlines (25, 26).

A new method is presented to formulate the convecting and convected velocity. In this
formulation we use streamline upwind and physical influence schemes and the transport equation
to represent a new formula for the convected and convecting velocity.

Convected velocity

The convected velocity, which appears in the momentum equation to evaluate the surface
integral of the momentum equation convection terms, must be integrated on the integration
points
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pdjgﬁdsi = pu dds . pi T PV Pds 3 i (21)
Many approaches have been proposed for the evaluation of the convected velocity at the
integration points. The problem that arises in conventional methods, is the failure to include the
influence of the appropriate fluid flow or scalar transport physics on the integration point
variables.

For the convection dominated problem as referred to above, the local upstream values will have a

strong influence on the value of ¢, therefore the appropriate profile should have the form:
¢ip :¢up +A¢ (22)

where A¢ is a streamwise correction term (28, 29). With the central differencing scheme (CDS),
second order accuracy for A¢ is obtained but it does not yield the physically correct influence and
leads to “unphysical” oscillations especially in the high Peclet number. In the upwind or hybrid
scheme, the physics of the problem are used for evaluation of the correction term. But these
schemes input excessive false diffusion and consequently results are not accurate. The accuracy
of the method is increased by improving the interpretation of the distribution of variables on the
element compatible with the fluid flow. The best equation for this is the fluid flow governing
equation. Schneider and Karimian [27] used the governing equation to obtain a relation that
evaluates the convected velocity based on nodal variables.

In this regard, the conservative general form of the governing equation is written

p%+ pd%Jr pﬁg—¢:rv2¢+s¢+b

where, b is the gradient of the pressure.
In the stream wise direction, this equation will be

— 0.5
P%+pV 2—¢=FV2¢+S¢+b V=(u2+v2) (24)
S

s 1s the flow direction. After rearrangement of the above, the equation becomes

o0 1 o¢ 2
— = ——| - p—+TVP+S,+5b 25
Bs pV{ ry P+ 3 } @

In the streamline direction we discretize the Eq (14) as:

As, 0
¢, =0, + pfp {—pa—f+rv2¢+s¢+b} (26)

The second term represents streamwise correction. ¢y, will be evaluated using the skewed
streamline upwind method by accounting for the local flow direction.
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Inside the bracket we have transient and diffusion terms that we must discrete. Discretizetion of
the Laplacian term needs a second shape function; for this we used the bilinear shape function.
For this problem, Karimian [27] considered the transient and diffusion terms explicitly by
previous iteration or time steps. Schneider [28] considered only the transient term explicitly. In
this scheme there are problems with the consistency and, at very little time steps, many
oscillations are produced. The Karimian [27] method in transient and low Reynolds number has
many shortcomings. For this reason we use the representation of Schneider [28] for discretizing
the Laplacian operator as shown below

M.

N |ipi @ jJ - ¢ipi

(V 2¢)ipi ~ — 1d °

27

Where Ld” is an appropriate diffusion length scale and for a rectangular element is given by

-1
Ld * = 22+ 8 - (28)
A x 3Ay

With substitution of Eq. (16) in Eq. (15) and with backward discretization of transient term will
have

4
N|. ®j

¢, = PV $, + —+ wo, 5o b (29)
" aASs, " ALd AN A 4
Where A is defined as
pV_ Yo r

= + + 30
AS, At Ld *? ¢0)

Therefore, all fluid flow physical affects convected velocity and as the relation is in implicit
form, there is no need for extra memory storage. We repeat this procedure for two-phase flow
and arrive at

4
> N|'p' Ep @
. ipi ipi . o o S
¢ii _ &P V ¢u i j=1 . 4 PE 1pl¢lpl + _¢+ i (31)
" qAs, T ALd AAE A A
|14 E ipi &L RN pi , J 5 5 ONGpi,
Lo eV PEy Ewl] i,y %‘% +p0, > ME (32)

AS, At Ld® = =R

Convecting velocity modeling
The convecting velocity appears in the continuity equation and mass fluxes. The pressure
checkerboard problem arises from the pressure field decoupling. The primary aim is to include
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coupling between the pressure and the velocity in convecting velocity, because substitution of the
convecting velocity in the continuity equation results in oscillation—free pressure and velocity. To
prevent the pressure/velocity-decoupling problem, we use the momentum equation that includes
the influence of pressure on the velocity. We rewrite the momentum equation in the streamline
direction as:

ou — Ou oP
—+ pV —+ ——-TVu=0 33
p ot p os ox (33)

After discretizing the convection term in the streamline direction, we will have

_{u, —u, ou OP
”V[#}p?g—w%wo G4
up

By rearrangement of the Eq. (21), we will have

As ou oP
0. =u +—=2| - p—+I'V?uy —-— 35
ip up IDV ( P ot ip ax} ( )

In Eq. (22) the effect of the pressure has appeared in the convecting velocity. In fact, inside the
bracket of Eq. (22) is the momentum equation error (&) and without the effect of the continuity
equation. To include this effect we add the residual of the continuity equation to the bracket on
the right-hand side of Eq. (22) (7, 8). The residual of the continuity equation is defined as

i B 8u+8v 36
v Pl ox 3y ) (36)

p

If we rearrange the Eq. (23) in the fluid flow direction, we will have

os /), Oy oy »

By substitution of Eq. (24) into Eq. (22), we will have

In the above relation, the transient and diffusion terms are evaluated based on previous iteration
data (8). To improve the above relation we use transient and diffusion terms implicitly. After
using backward differencing method for the transient term and discretizing the Laplacian
operator, we will have
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up + Asupudn )+ e p

4
— AS N
oV 1wl Z, s oP oy ou
— + - - +p
A At Ld ox

(39)

We repeat a similar procedure forv. The advantage (40) of the above treatment is that all the
variable employed are implicit and therefore we have highly accurate results for very low to very
high ranges of Reynolds number and unsteady fluid flow. Again we repeat the above procedure

for the two-phase flow and then we have:

S, +As u, )+
up n

~ | —
>
B

AAsAs dn " up

Simulation and Results of Gas/Solid Flow
in a 2-D Riser

The new FVBFE method was used for the
gas-solid two—dimensional flow in the riser
section of the circulating fluidized bed
(CFB). CFB are common in the petroleum
industry. Figure 2 shows the riser section of a
CFB used in the numerical simulation of
gas/solid flow. The geometry of the riser is
similar to the experimental set up used by
Yang [29, 30]. Table (1) lists the ex-
perimental conditions of the test case.
Initially the reactor is empty and the velocity
of both gas and solid are set to zero. The
simulated system was isothermal and the
initial pressure was selected at atmospheric.
Solid particles and gas were fed from the
bottom of the riser uniformly. Gas and solid
exited the system through the side outlet set
below the closed up of the riser with a width
of 0.14 m (similar to the side-inlets).

The inlet boundary conditions are completely
specified for all dependent variables for both
gas and particular phases of the prescribed
flow. At the outlet, the normal gradient of the
quantities is set to zero and exit pressure is
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specified. At the wall surface the normal
gradient of all scalar variables and radial
velocities of both phases are also set to zero.
For the axial and tangential directions the gas
velocity obeys the “no-slip” boundary
condition. The particle phase velocity
gradients at the riser is computed from the
appropriate “wall function” [31], whereas the
particulate phase is allowed to slip along the
wall.

Table 1. Experimental Test Case Used for New
Method [29, 30]

Particle diameter, d,, (m) 5.4%107
Particle density, p (kg/m’) 1545
Riser diameter(m) 0.14
Riser height(m) 11.0
Inlet gas axial velocity(m/s) 4.33
Particle mass flux(kg/m?/s) 10.0
Inlet particle volume fraction 0.022
31
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Diameter = 14 cm

—
—S
—s

Outlet Height
14 cm

Height = 1100 cm

I

Figure 2. Geometry of the simulation system [29,30]

Figures (3, 4) show the comparison between
the calculated radial gas and particle velocity
distributions in the riser at heights of 1.6 and
6.6 m with experimental data [29,30] taken at
the same heights. The particle velocity in the
center of the riser was an upward, fast
moving core surrounded by a slow moving
layer near the wall. The agreement between
the predicted and the measured velocities is
remarkably good. Figure (5) shows the
prediction of the velocity vectors of the
gas/particle phases. Due to the very high
solid (and gas) axial velocity at the center of
the riser, the solid flux was at its maximum
value, although the solid concentration was at
its lowest value. Figure (6) shows the time-
averaged axial particle volume fraction and
pressure in the riser. The high-pressure drop
at the bottom of the riser was due to the
effect of particle feeding in that region. The
pressure drop then decreased along the height
of the riser resulting from decrease in the
solid concentration. Due to the prediction of
a bigger dilute core in the 2-D riser, lower
flow resistance and a lower calculated
pressure drop result.

32

Nomenclature

ds Outward normal vector of area
e Total energy per unit mass, J/kg
g Gravity acceleration, ms”

|J | Jacobean determinant

P Pressure, pa

qi Component of heat flux vector
S Flow direction

S Source term

§,f  Local coordinate

t Time, s

u Velocity, cm/s

X,y  Global coordinate

Greek Symbols
Interphase  momentum  transfer
coefficient

€ Void fraction (volume fraction of
particle)
Density, Kgm™

p Stress tensor component

1) Viscosity, gr/m.s

() Generalized conserved quantity

s spherity

r General diffusion coefficient

\% Divergence operator

V?  Laplacian operator

Subscripts

g Gas phase

S Solid phase

1,j,k=1,2  Einstein summation indices
ip Integration point

up Upstream

cv Control volume

Superscripts
Lagged value from the previous
iteration

O Previous time step value
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Figure 4. Calculated radial distribution of the axial particle velocity.vs. experimental data [29,30]
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