Document Type : Regular Article


Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran


The Micromixing plays a key role in the most of industrial processes; enhancing its efficiency is a very important issue. In this study, a typical rotating packed bed (RPB) reactor equipped with the blade packing and high frequency ultrasonic transducers were designed to study the micromixing efficiency using the iodide/iodate reaction. The utilized ultrasonic transducers were ultrasonic atomizer humidifiers with the frequency of 1.7 MHz. Taking advantage of both the controllable high gravitational force and induced effects of the high frequency ultrasound, simultaneously, in a small volume reactor is the novelty of the present work. The effects of different parameters like the rotational speed, volumetric ratio, concentration of acid, ultrasonic power and number of activ transducers were investigated with and without the ultrasonic field. By increasing the rotational speed and volumetric flow, the segregation index decreased and by increasing the concentration of acid and volumetric ratio, the segregation index increased. In all of experiments, the segregation index decreased significantly under the ultrasonic field. Moreover, by increasing the ultrasonic power and number of active transducers the segregation index decreased. The obtained results indicated that the relative segregation index increased up to 41.1 % under the 1.7 MHz ultrasonic field. Therefore, the high frequency ultrasonic waves can intensify micromixing, even in a high efficiency equipment like RPB


Main Subjects

  • Jeong, G. S., Chung, S., Kim, C. -B. and Lee, S. -H., “Applications of micromixing technology”, Analyst, 135 (3), 460 (2010).
  • Guichardon, and Falk, L., “Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I: experimental procedure”, Chem. Eng. Sci., 55 (19), 4233 (2000).
  • Dong, C., Zhang, J. S., Wang, K. and Luo, G. S., “Micromixing performance of nanoparticle suspensions in a micro-sieve dispersion reactor”, Eng. J., 253, 8 (2014).
  • Tian,, Demirel, S. E., Faruque Hasan, M. M. and Pistikopoulos, E. N., “An overview of process systems engineering approaches for process intensification: State of the art”, Chem. Eng. Process., 133, 160 (2018).
  • Wenzel, and Górak, A., “Review and analysis of micromixing in rotating packed beds”, Chem. Eng. J., 345, 492 (2018).
  • Lin, C. -C., Liu, W. -T. and Tan, C. -S., “Removal of carbon dioxide by absorption in a rotating packed bed”, Eng. Chem. Res., 42, 2381 (2003).
  • Qian, Z., Xu, L. -B., Li, Z. -H., Li, H. and Guo, K., “Selective absorption of H2S from a gas mixture with CO2 by aqueous n-methyldiethanolamine in a rotating packed bed”, Eng. Chem. Res., 49, 6196 (2010).
  • Lin, C. C., Chen, S. and Liu, H. S., “Adsorption of dodecane from water in a rotating packed bed”, J. Chin. Inst. Chem. Eng., 35, 531 (2004).
  • Lin, C. -C., Ho, T. -J. and Liu, W. -T., “Distillation in arotating packed bed”, Chem. Eng. Jpn., 35, 1298 (2002).
  • Mosleh, , Rahimi, M. R., Ghaedi, M., Dashtian, K. and Hajati, S., “Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization”, Ultrason. Sonochem., 40, 601 (2018).
  • Yang,, Chu, G. -W., Shao, L., Luo, Y. and Chen, J. -F., “Micromixing efficiency of rotating packed bed with premixed liquid distributor”, Chem. Eng. J., 153, 222 (2009).
  • Yue, X. -J., Luo, Y., Chen, Q. -Y, Chu, G. -W., Luo, J. -Z., Zhang, L. -L. and Chen, J. -F., “Investigation of micromixing and precipitation process in a rotating packed bed reactor with PTFE packing”, Eng. Process., 125, 227 (2018).
  • Neumann, K., Gladyszewski, K., Groß, K., Qammar, H., Wenzel, D., Górak, A. and Skiborowski, M., “A guide on the industrial application of rotating packed beds”, Eng. Res. Des., 134, 443 (2018).
  • Yang, H. J., Chu, G. W., Xiang, Y. and Chen, J. F., “Characterization of micromixing efficiency in rotating packed beds by chemical methods”, Eng. J., 121, 147 (2006).
  • Jiao, W., Liu, Y. and Qi, G., “A new impinging stream–rotating packed bed reactor for improvement of micromixing iodide and iodate”, Eng. J., 157, 168 (2010).
  • Chu, G. -W., Song, Y. -H., Yang, H. -J., Chen, J. -M., Chen, H. and Chen J. -F., “Micromixing efficiency of a novel rotor-stator reactor”, Eng. J., 128, 191 (2007).
  • Chu, G. -W., Song, Y. -J., Zhang, W. -J., Luo, Y., Zou, H. -K., Xiang, Y. and Chen, J. -F., “Micromixing efficiency enhancement in a rotating packed bed reactor with surface-modified nickel foam packing”, Eng. Chem. Res., 54, 1697 (2015).
  • Ouyang, Y., Xiang, Y., Gao, X. -Y., Li, W. -L., Zou, H. -K., Chu, G. -W. and Chen, J. -F., “Micromixing efficiency in a rotating packed bed with non-newtonian fluid”, Eng. J., 354, 162 (2018).
  • Lin, C. C. and Jian, G. S., “Characteristics of a rotating packed bed equipped with blade packings”, Purif. Technol., 54, 51 (2007).
  • Lin, -C. and Tsai, C. -H., “Micromixing in a rotating packed bed with blade packings”, J. Taiwan Inst. Chem. E., 63, 33 (2016).
  • Wenzel, D., Nolte, K. and Górak, A., “Reactive mixing in rotating packed beds: On the packing’s role and mixing modeling”, Eng. Process.-Process Intensif., 143, 107596 (2019).
  • Ouyang, Y., Xiang, Y., Gao, X. -Y., Zou, H. -K., Chu, G. -W., Agarwal, R. K. and Chen, J. -F., “Micromixing efficiency optimization of the premixer of a rotating packed bed by CFD”, Eng. Process-Process Intensif, 142, 107543 (2019).
  • Abolhasani, M., Karami, A. and Rahimi, M., “Numerical modeling and optimization of the enhancement of the cooling rate in concentric tubes under ultrasound field”, Heat Tr. A-Appl, 67, 1282 (2015).
  • Rahimi, M., Dehbani, M. and Abolhasani, M., “Experimental study on the effects of acoustic streaming of high frequency ultrasonic waves on convective heat transfer: Effects of transducer position and wave interference”, Commun. Heat Mass, 39, 720 (2012).
  • Legay, M., Gondrexon, N., Le Person, S., Boldo, P. and Bontemps, A., “Enhancement of heat transfer by ultrasound: Review and recent advances”, J. Chem. Eng., Article ID 670108, (2011).
  • Dehbani, and Rahimi, M., “Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement”, Ultrason. Sonochem., 42, 689 (2018).
  • Abolhasani, M., Rahimi, M., Dehbani, M. and Alsairafi, A. A., “CFD modeling of heat transfer by 1.7 MHz ultrasound waves”, Heat Tr. A-Appl, 62, 822 (2012).
  • David, J. and Cheeke, N., Fundamentals and applications of ultrasonic waves, Chapter 1, CRC, Boca Raton, FL, (2002).
  • Luque de Castro, M. D. and Priego Capote, F., Analytical applications of ultrasound, Elsevier, Cordoba, Spain, (2007).
  • Parvizian, F., Rahimi, M., Hosseini, S. M., Madaeni, S. S. and Alsairafi, A. A., “The effect of high frequency ultrasound on diffusion boundary layer resistance in ion-exchange membrane transport”, Desalination, 286, 155 (2012).
  • Rahimi, M., Abolhasani, M. and Azimi, N., “High frequency ultrasound penetration through concentric tubes: Illustrating cooling effects and cavitation intensity”, Heat Mass Transfer, 51, 587 (2015).
  • Laborde, J. -L., Hita, A., Caltagirone, J. -P. and Gerard, A., “Fluid dynamics phenomena induced by power ultrasounds”, Ultrasonics, 38, 297 (2000).
  • Hyun, S., Lee, D. R. and Loh B. G., “Investigation of convective heat transfer augmentation using acoustic straeming generated by ultrasonic vibrations”, J. Heat Mass Transfer, 48, 703 (2005).
  • Gondrexon, N., Renaudin, V., Petrier, C., Clement, M., Boldo, P., Gonthier, Y. and Bernis, A., “Experimental study of the hydrodynamic behavior of a high frequency ultrasonic reactor”, Sonochem., 5, 1 (1998).
  • Dehbani, M., Rahimi, M., Abolhasani, M., Maghsoodi, A., Ghaderi Afshar, P., Dodmantipi, A. R. and Alsairafi, A. A., “CFD modeling of convection heat transfer using 1.7 MHz and 24 kHz ultrasonic waves: A comparative study”, Heat Mass Transfer, 50, 1319 (2014).
  • Parvizian, F., Rahimi, M. and Azimi, N., “Macro- and micromixing studies on a high frequency continuous tubular sonoreactor”, Eng. Process., 57-58, 8 (2012).
  • Méndez-Arriaga,, Torres-Palma, R. A., Pétrier, C., Esplugas, S., Gimenez, J. and Pulgarin, C., “Ultrasonic treatment of water contaminated with ibuprofen”, Water Res., 42, 4243 (2008).
  • Knorr,, Zenker, M., Heinz, V. and Lee, D. -U., “Applications and potential of ultrasonics in food processing”, Trends. Food Sci. Tec., 15, 261 (2004).
  • Jordens, , Bamps, B., Gielen, B., Braeken, L. and Gerven, T. V., “The effects of ultrasound on micromixing”, Ultrason. Sonochem., 32, 68 (2016).
  • Rahimi,, Azimi, N. and Parvizian, F., “Using microparticles to enhance micromixing in a high frequency continuous flow sonoreactor”, Chem. Eng. Process., 70, 250 (2013).
  • Faryadi, M., Rahimi, M., Safari, S. and Moradi, N., “Effect of high frequency ultrasound on micromixing efficiency in microchannels”, Eng. Process., 77, 13 (2014).
  • Luo, Y., Luo, J. -Z., Yue, X. -J., Song, Y. -J., Chu, G. -W., Liu, Y., Le, Y. and Chen, J. -F., “Feasibility studies of micromixing and mass-transfer in an ultrasonic assisted rotating packed bed reactor”, Eng. J., 331, 510 (2018).
  • Parvizian,, Rahimi, M. and Faryadi, M., “Macro-and micromixing in a novel sonochemical reactor using high frequency ultrasound”, Chem. Eng. Process., 50, 732 (2011).
  • Monnier, H., Wilhelm, A. -M. and Delmas, H., “Influence of ultrasound on mixing on the molecular scale for water and viscous liquids”, Sonochem., 6, 67 (1999).
  • Rabiei Faradonbeh, V., Rabiei, S., Rabiei, H., Goodarzi, M., Safaei, M. R. and Lin, C. -X., “Power-law fluid micromixing enhancement using surface acoustic waves”, Mol. Liq., 347, 117978 (2022).
  • Yang, H. -J., Chu, G. -W., Zhang, J. -W., Shen, Z. -G. and Chen, J. -F., “Micromixing efficiency in a rotating packed bed: Experiments and simulation”, Eng. Chem. Res., 44, 7730 (2005).
  • Jagannathan, T. K., Nagarajana, R. and Ramamurthi, K., “Effect of ultrasound on bubble breakup within the mixing chamber of an effervescent atomizer”, Eng. Process., 50, 305 (2011).