Document Type : Regular Article

Authors

1 Department of Chemistry and Chemical Engineering, Rasht branch, Islamic Azad University, Rasht, Iran

2 Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan,

3 Iran,Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 1045195-313,Zanjan,Iran

Abstract

The Mixed Matrix Membrane (MMM) concept consists of incorporating suitable polymers with inorganic or organic fillers. The majority of polymeric membranes maintain a trade-off between permeation and selectivity, which restricts their development in separation applications. In this paper, less reviewed challenges on development of MMMs, such as the preparation of mix-matrix resistant membranes for industrial gas separation applications, as well as the use of appropriate and compatible fillers for different types of polymers were discussed. The MMMs comprising Metal Organic Framework (MOF) fillers were extensively studied. The importance of MOFs includes finely tunable structures, excellent compatibility with polymer matrices, and molecular sieve action. MMMs are considered promising structures that combines the advantages of polymeric and inorganic membranes. They exhibit the potential to upgrade the separation performance of pure polymer membranes using filler materials, whereas the cost remains relatively lower than that of pure inorganic membranes. The development of novel filler materials makes a substantial contribution in terms of role-playing.

Keywords

Main Subjects

  • Baker, R. W., Membrane technology and applications, 1st edition, McGraw-Hill, New York, USA, (2000).
  • Baker, R. W., Membrane technology and applications, 2nd edition, John Wiley & Sons, New York, USA, (2004).
  • Ismail, A., Khulbe, K. C. and Matsuura, T., Gas separation membranes: Polymeric and inorganic, Springer, (2015).
  • Stewart, M. and Arnold, K., Gas sweetening and processing field manual, Gulf Professional Publishing, (2011).
  • Ismail, A. and Matsuura, T., Sustainable membrane technology for energy, water, and environment, John Wiley & Sons, (2012).
  • Ball, P., “Scale-up and scale-down of membrane-based separation processes”, Membr. Technol., 117, 10 (2000).
  • Ramírez-Santos, Á. A., Castel, C. and Favre, E., “A review of gas separation technologies within emission reduction programs in the iron and steel sector: Current application and development perspectives”, Purif. Technol., 194, 425 (2018).
  • Buonomenna , G., “ Membrane processes for a sustainable industrial growth”, RSC Advances.,  3, 5694 (2013).
  • Baker , R. W. and Low  T., “Gas Separation Membrane Materials: A Perspective”,  Macromolecules., 47, 6999  (2014).
  • Low, Z. X. Budd, P. M. McKeown,  B.  Patterson,  D. A., “Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers”,  Chem. Rev.,  118, 5871  (2018).
  • Galizia, M. Chi, W. S. Smith, Z. P. Merkel, C.  Baker,  R. W.  Freeman,  B. D., “50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities”,  Macromolecules., 50, 7809 ( 2017).
  • Kesting, R. E. and Fritzsche, A. K., Polymeric Gas Separation Membranes, Wiley, New York, NY, 1993).
  • Paul, R. and Yampol’skii Y. P., Polymeric Gas Separation Membranes. 1nd ed, CRC Press, Boca Raton, FL, 1994).
  • Spillman, W., “Economics of gas separation membranes”, Chem. Eng. Prog., 85, 41 (2008).
  • Stern, S. A., “Polymers for gas separations: the next decade”, Membr. Sci., 94, 1 (1994).
  • Koros, W. J. and Story B. J. Jordan S. M. O’Brien, K. Husk,  R., “Material selection considerations for gas separation processes”,  Polym. Eng. Sci., 27, 603 (1987).
  • Koros, W. J. and Mahajan, ,  “Pushing the limits on possibilities for large scale gas separation: which strategies?”,  J. Membr. Sci., 175, 181 (2000).
  • Fane, G. Wang, R.  Hu , M. X., “ Synthetic membranes for water purification: Status and future”,  Angew. Chem. Int. Ed. Engl., 54, 3368 (2015).
  • Werber, J. R., Osuji, C. O. and Elimelech, M., “Materials for next-generation desalination and water purification membranes”, Rev. Mater., 1, 1 (2016).
  • Ong, Y. K. Shi, M. Le,  N. L. Tang,  Y. P.  Zuo,  J. Nunes,  S. P. Chung,  T.-S., “Recent membrane development for pervaporation processes”,  Prog. Polym. Sci., 57, 1 (2016).
  • Bernardo, Drioli, E., “ Golemme G. Membrane Gas Separation: A Review/State of the Art”, Ind. Eng. Chem. Res., 48, 4638 (2009).
  • Robb W. L., Thin silicone membranes-their permeation properties and some applications. Annals of the New York Academy of Sciences. 1968;146:119–137.
  • George, G. Bhoria, Alhallaq,  S.  Abdala,  A.  Mittal,  V., “Polymer membranes for acid gas removal from natural gas”, Sep and Purif Technol., 158,  333 (2016).
  • Guiver, D. and Lee,  Y. M., “Polymer rigidity improves microporous membranes”, Science., 339, 284 (2013).
  • Henis, J. M. S. Trinodi, M. K.., “A novel approach to gas separations using composite hollow fiber membranes”, Separation Science and Technology., 15, 1059 (1980).
  • Baker, W., “Future directions of membrane gas separation technology”, Industrial and Engineering Chemistry Research.,  41, 1393 (2002).
  • George, G. Bhoria,   Alhallaq, S.  Abdala,  A. Mittal,  V., “Polymer membranes for acid gas removal from natural gas”,  Separation and Purification Technology., 158, 333 (2016).
  • Bernardo, , Drioli, E., Golemme, G., “Membrane gas separation: a review/state of the art”, Industrial and  Engineering Chemistry Research., 48, 4638  (2009).
  • Membrane Research and Technology (MTR), (http://www.mtrinc.com).
  • S. Department of Energy, “Membrane system for the recovery of volatile organic compounds from remediation off-gases,” Innovative Technology Summary Report, U.S. Department of Energy, 2001.
  • Zimmerman, C. M. Singh, A. Koros, W. J., “Tailoring mixed matrix composite membranes for gas separations”, Membr. Sci., 137, 145 (1997).
  • Li, Y. Chung, T. S., Cao, C. Kulprathipanja, , “The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes”,  J. Membr. Sci., 260, 45 (2005).
  • Guan, M. Chung, T. S.  Huang, Z.  Chng, M. L. Kulprathipanja, S.,  “Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture”,  J. Membr. Sci., 268, 113 (2006).
  • Kim, S. Pechar, T. W. Marand, ,” Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation “, Desalination., 192, 330 (2006).
  • Jiang, L. Y. Chung, T. S. Cao, Huang, Z.  Kulprathipanja, S., “Advances in Functional Separation Membranes”,  J. Membr. Sci., 252, 89 (2005).
  • Okumus , E. Gurkan, Yilmaz, L., “Development of a Mixed-Matrix Membrane for Pervaporation”, Sep. Sci. Technol., 29,  2451 (1994).
  • Li, Y. Chung, T. S. Kulprathipanja, , “Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity”, AIChE J., 53, 610 - 616 ( 2007).
  • Jia, M. D. Peinemann, K. V. Behling, R. D., “Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation”, Membr. Sci., 57, 289  (1991).
  • Shao, L. Samseth , J. Hagg, B., “Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations”, J. Membr. Sci., 326, 285 (2009).
  • Nunes, S. P. Peinemann, V. Ohlrogge, K.  Alpers, A.  Keller, M. Pires, A. T. N., “Membranes of poly(ether imide) and nanodispersed silica”, J. Membr. Sci., 157, 219  (1999).
  • Sforca L. Yoshida, I. V. P. Nunes, S. P., “Organic–inorganic membranes prepared from polyether diamine and epoxy silane”,  J. Membr. Sci., 159, 197- 207 (1999).
  • Zoppi, R. A., Neves das , S. Nunes, S. P., “Hybrid films of poly(ethylene oxide-b-amide-6) containing sol–gel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability”, , 41, 5461 (2000).
  • Li, W. X. Zhang, X. J. Xing, W. H.  Jin, W. Q.  Xu,  P., “Hydrolysis of Ethyl Lactate Coupled by Vapor Permeation Using Polydimethylsiloxane/Ceramic Composite Membrane”, Ind. Eng. Chem. Res., 49, 11244 (2010).
  • Xiangli, J. Chen, Y. W. Jin, W. Q.  Xu, N. P.,  “Polydimethylsiloxane (PDMS)/Ceramic Composite Membrane with High Flux for Pervaporation of Ethanol−Water Mixtures”, Ind. Eng. Chem. Res. 46, (2007).
  • Kulprathipanja, S. Neuzil, R. W. Li, N. N., “Separation of fluids by means of mixed matrix membranes”, US Pat. 4740219, 1988.
  • Chung, T. S. Jiang, L. Y. Li, Y. Kulprathipanja,  , “Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation”, Prog. Polym. Sci., 32, 483 (2007).
  • Aptel, P. Armor, J. Audinos, R.  Baker,  W. Bakish,  R. Belfort, G. Bikson, B. Brown, R. G. Bryk, M. Burke, J. J., “Terminology for membranes and membrane processes (IUPAC Recommendations 1996) “,  J. Membr. Sci., 120, 149  (1996).
  • Ter Minassian-Saraga, L. Adler, M. Barraud,  Churaev,  N. V,  Eaton, D. F.  Kuhn,  H.  Misono, M. Platikanov,  D.  Ralston,  J.  Silberberg, A., “ Thin films including layers: Terminology in relation to their preparation and characterization. IUPAC recommendations 1994”, Thin Solid Films., 277, 7 (1996).
  • Baker, R. W., Membrane technology and applications, 3rd edition, John Wiley & Sons, New York, USA, (2012).
  • Ho, W. S. Sirkar, K. K.., editors. Membrane Handbook. Van Nostrand Reinhold; New York, NY, USA, 1992.
  • Bodzek, Bohdziewicz, J.  Konieczny,  K., Techniki Membranowe W Ochronie Srodowiska. Wydawnictwo Politechniki Slaskiej;  TECHNIKI MEMBRANOWE W OCHRONIE ŚRODOWISKA. Gliwice, Poland,  1997.
  • Mulder, H. V., Basic Principles of Membrane Technology. Kluwer Academic Publishers; Dordrecht, The Netherlands: Boston, MA, USA: London, UK, 1991.
  • Feng, X. Huang, R .Y. M., “Liquid separation by membrane pervaporation: A review.”,  Eng. Chem. Res., 36, 1048 (1997).
  • Slater, S., “A review of: “Pervaporation membrane separation processes”, Sep. Purif. Methods., 20, 109 (1991).
  • Basile, A. Gallucci, F., Membranes for Membrane Reactors: Preparation, Optimization and Selection. John Wiley & Sons, 2011.
  • Nandi, B. K. Uppaluri, R., Purkait, M. K., “Preparation and characterization of low cost ceramic membranes for micro-filtration applications”, Clay. Science., 42, 102 (2008).
  • Green, D., Perry, R., Perry's Chemical Engineers' Handbook, McGraw-Hill Education, 8th edition, 2007.
  • Gandia, Arzamedi, G. Dieguez, P., “Renewable Hydrogen Technologies: Production, Purification, Storage”, Applications and Safety, Elsevier Science, 2013.
  • Lin, H. Gupta, R. P., “Plasticization-enhanced hydrogen purification using polymeric membranes”, Science., 311, 639 (2006).
  • Park, H. B., Jung, C. H., Lee, Y. M., Hill, A. J., Pas, S. J., Mudie, S. T., Van Wagner, E. Freeman, D. Cookson , D. J., “Polymers with cavities tuned for fast selective transport of small molecules and ions”, Science., 318, 254 (2007).
  • Japip, , Liao, K. S., Chung, T. S.,” Molecularly tuned free volume of vapor cross-linked 6FDA-Durene/ZIF-71 MMMs for H2/CO2 separation at 150 °C”,  Adv. Mater., 29, (2017).
  • Yong, W. F. Li, F. Y. Chung, T. S. Tong, Y .W., “Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification” , Mater. Chem.,  1, 13914 (2013).
  • Shekhawat, Luebke, D. R. Pennline, H. W., “A review of carbon dioxide selective membranes, A Topical Report”,  National Energy Technology Laboratory United States Department of Energy., 1, (2003).
  • Hsieh, P., “Membrane and Membrane Processes, in Inorganic Membranes for Separation and Reaction. Elsevier, Amsterdam, 1996.
  • Burggraaf, J. Keizer, K., “Inorganic Membranes: Synthesis, Characteristics, and Applications”, Van Nostrand Reinhold, New York, 10 (1991).
  • Pabby, K. Rizvi, S. S. H. Sastre, A. M., Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, CRC Press/Taylor & Francis Group, New York, 2009.
  • George, G. Bhoria, AlHallaq,  S.  Abdala,  A.  Mittal, V., “Polymer membranes for acid gas removal from natural gas”,  Sep Purif Technol., 158, 333  (2016).
  • Alqaheem, Alomair, A. Vinoba, M.  Perez, A.,  “Polymeric gas-geparation membranes for petroleum refining”, Int J Polym Sci., 1 ( 2017).
  • Heo, Lee, B. Lim,  H., “Techno-economic analysis for CO2 reforming of a medium-grade landfill gas in a membrane reactor for H2 production”,  J. Clean Prod., 172, 2585 (2018).
  • Han , Y. Ho, WSW., “Recent advances in polymeric membranes for CO2 capture”, Chinese J Chem Eng., 26, 2238 (2018).
  • Shen, Y. Lua, C., “Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation”, J. Chem Eng. 192, 201 (2012).
  • Lua, C, Shen, Y., “Preparation and characterization of polyimide-silica composite membranes and their derived carbon-silica composite membranes for gas separation”, J. Chem Eng., 220, 441 (2013).
  • Loeb, Sourirajan, S. “Sea water demineralization by means of a semipermeable membrane”, Advances in Chemistry., 38, 117 (1962).
  • Petheram, , Acid Rain, Bridgestone Books, 2002.
  • Sidney, L. Srinivasa, S., “High flow porous membranes for separating water from saline solutions. US Patent. 3 (133,132) 1964.
  • Gantzel , P. K., Merten, U., “Gas separations with high-flux cellulose acetate membranes”, Industrial & Engineering Chemistry., 9, 331 (1970).
  • Cowie, J., Polymers: Chemistry and Physics of Modern Materials, Taylor & Francis, 2nd ed, 1991.
  • Robeson, L. M. Liu,Q. Freeman, B. D. and Paul, D. R., “Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship”, Membr. Sci., 476, 421 (2015).
  • Porter, M. C., Handbook of Industrial Membrane Technology. Noyes Publications, Park Ridge, 1988.
  • Sea, K., Kusakabe, K. Morooka. S., “Pore-Size Control and Gas Permeation Kinetics of Silica Membranes by Pyrolysis of Phenyl-Substituted Ethoxysilanes with Cross-Flow Through a Porous Support Wall”, J. Membr. Sci., 130, 41(1997).
  • George, G. Bhoria, Alhallaq, S. Abdala,  A. Mittal, V., “Polymer membranes for acid gas removal from natural gas”, Separation and Purification Technology., 158, 333 (2016).
  • Ismagilov, R., “Porous alumina as a support for catalysts and membranes. Preparation and study”, Reaction Kinetics and Catalysis Letters., 60, 225 (1997).
  • Wijmans, G. Baker, R. W., “The solution-diffusion model: a review”,  Journal of Membrane Science., 107, 1 (1995).
  • Vinh-Thang, Kaliaguine, S., “Predictive models for mixed-matrix membrane performance: A review”,  Chem. Rev.,  113,  4980 (2013).
  • Hussain, König, A., “Mixed-Matrix Membrane for Gas Separation: Polydimethylsiloxane Filled with Zeolite”,  Chem. Eng. Technol., 35, 561 (2012).
  • Goh, P. S. Ismail, F. Sanip,  S. M.  Ng, B. C. Aziz,  M., “ Recent advances of inorganic fillers in mixed matrix membrane for gas separation”, Sep. Purif. Technol., 81, 243 (2011).
  • Goh, P. S. Ismail, F., ”A review on inorganic membranes for desalination and wastewater treatment”, Desalination., 434, 60 (2018).
  • Zimmerman, C. M., Singh, A., Koros, W. J.,”Tailoring mixed matrix composite membranes for gas separations”, Membr. Sci., 137, 145 - 154 (1997).
  • Noble, R.D., “Perspectives on mixed matrix membranes”, Membr. Sc., 378, 393 (2011).
  • Dechnik, J. Gascon, Doonan, C. J. Janiak,  C. Sumby,  C. J., “ Mixed-Matrix Membranes”, Angew. Chem. Int. Ed., 56, 9292 (2017).
  • Bastani, D. Esmaeili, N. Asadollahi, M., ”Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review”,  Ind. Eng. Chem. , 19, 375 (2013).
  • Carreon, A,. Membranes for Gas Separations., Colorado School of Mines: Golden, CO, USA, 2018.
  • Liu, C. Greer, D. W. O’Leary, W., Advanced materials and membranes for gas separations: The uop approach. In Nanotechnology: Delivering on the Promise Volume 2; American Chemical Society: Washington, DC, USA, 1224, 119 (2016).
  • Dechnik, J. Gascon, Doonan , C. J.  Janiak,  C. Sumby,  C. J., “Mixed-matrix membranes”,  Angew. Chem. Int. Ed. 56, 9292 (2017).
  • Yang, Y. Chuah, Y. Nie, L. Bae, T. H., “Enhancing the mechanical strength and CO2/CH4 separation performance of polymeric membranes by incorporating amine-appended porous polymers”,  J. Membr. Sci., 569, 149  (2019).
  • Ansaloni, L. Deng, L., 7–advances in polymer-inorganic hybrids as membrane materials. In Recent Developments in Polymer Macro, Micro and Nano Blends, Cambridge, UK, 163 (2017).
  • Maghami, , Abdelrasoul, A., Zeolite Mixed Matrix Membranes (Zeolite-MMMs) for Sustainable Engineering. West Virginia University: Morgantown, VA, USA, 2018.
  • Li, Y. He, G. Wang, S. Yu, S. Pan, Wu, H.  Jiang, Z., “Recent advances in the fabrication of advanced composite membranes”, J. Mater. Chem., 1, 10058 (2013).
  • Liu, Y. Liu, G. Zhang, Qiu, W. Yi, S. Chernikova, V. Chen,  Z. Belmabkhout,  Y.  Eddaoudi M., “Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored mof-polymer formulations”,  Adv. Sci., 5, 1800982 (2018).
  • Bae, T. H. Liu, J. Lee J. S. Koros, W. J. Jones, C. W. Nair S., “Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication”,  Am. Chem. Soc., 131, 14662 (2009).
  • Zornoza, B. Téllez, C. Coronas, , “Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation”,  J. Membr. Sci., 368, 100 (2011).
  • Anson, M. Marchese,  Garis, E. Ochoa,  N. Pagliero, C., “Abs copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation”,  J. Membr. Sci., 243, 19 (2004).
  • Kim, S. Chen, Johnson,  J. K.. Marand,  E., “Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment”, J. Membr. Sci., 294, 147 (2007).
  • Adams, Carson, C. Ward, J.  Tannenbaum , R.  Koros, W., “Metal organic framework mixed matrix membranes for gas separations”,  Microporous Mesoporous Mater., 131, 13 (2010).
  • Bastani,   Esmaeili,  N, Asadollahi, M.,” Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review”,  J Ind Eng Chem., 19, 375 – 93 (2013).
  • Bento, A. Lourenco, P. Fernandes,  A. Ribeiro,  MR. Arranz-Andres,  J. Lorenzo, V., “Gas permeability properties of decorated MCM-41/polyethylene hybrids prepared by in-situ polymerization”, J. Membr. Sci., 415, 702 (2012).
  • Harold, B. Jeazet, T. Staudt, C. Janiak, C., “ Metal–organic frameworks in mixed-matrix membranes for gas separation”, Dalton Trans., 41, 14003 (2012).
  • Merkel, C. Freeman , B. D. Spontak,  R. J., He,  Z. Pinnau, I. Meakin,  P. Hill, A. J., “Ultrapermeable, reverse-selective nanocomposite membranes”,  Science., 296, 519 (2002).
  • Ahn, J. Chung, J.  Pinnau,  I. Guiver, M. D., “Polysulfone/silica nanoparticle mixed- matrix membranes for gas separation”, J. Membr. Sci., 314, 123 (2008).
  • Reid, D. Ruiz-Trevino, A. Musselman, I. H.  Balkus,  K. J.  Ferraris, J. P., “Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41”,  Chem. Mater., 13, 2366 (2001).
  • Kim, S. Marand,  Ida,  J. Guliants,  V.V., “Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation”, Chem. Mater., 18, 1149  (2006).
  • Kim, S. Marand, E., “High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix”, Microp. Mesop. Mater., 114, 129 (2008).
  • Vu, D. Q., Koros, W. J., Miller, S. J., “Mixed matrix membranes using carbon molecular sieves. II. Modeling permeation behavior”, J. Membr. Sci., 211, 335 (2003).
  • Cong, H. L. Zhang,  M.  Radosz,  M. Shen,  Y. Q., “Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation”,  J. Membr. Sci., 294, 178 (2007).
  • Kim, S. Chen, L. Johnson,  K., Marand,  E., “Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment”,  J. Membr. Sci., 294, 147 ( 2007).
  • Gorgojo, P. Uriel, S.  Tellez, C. Coronas , J., “Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation”, J. Microporous Mesoporous Mater., 115, 85  (2008).
  • Liu, Y. Peng, D. He, G. Wang, S. Li, Y. Wu,  Jiang, Z., “Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite  particles  into  polyimide  matrix”,  ACS Appl. Mater. Interfaces., 6, 13051 (2014).
  • Li, Y. Chung, T. S. Huang,  Kulprathipanj, a., “Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation”, .J. Membr. Sci., 277, 28 (2006).
  • Aroon, A. Ismail. A. F. Matsuura, T.  Montazer-Rahmati,  M. M., “Performance studies of mixed matrix membranes for gas separation: A review “, Separation and Purification Technology., 75, 229 (2010).
  • Vu, D. Q. Koros, W. J, Miller, S. J., “ Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results”, J.  Sci., 211, 311 (2003).
  • Vu, D. Q., Koros, W. J, Miller, S. J., “Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior”,  Membr. Sci., 211, 335 (2003).
  • Jiang, L. Y. Chung, T. S. Cao, C. Huang, Kulprathipanja,  S., “Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes”,  J. Membr. Sci., 252, 89 (2005).
  • Rafizah, A. W.  Ismail,  A. F.,  “Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve–polysulfone mixed matrix membrane”,  J.  Membr. Sci., 307, 53 (2008).
  • Goh, S. Ismail,  A. F. Sanip, S. M.  Ng, B. C.  Aziz, M., “Recent advances of inorganic fillers in mixed matrix membrane for gas separation”, Separation and Purification Technology., 81, 243 (2011).
  • Moore ,T. T., Mahajan, R. Vu, D. Q. Koros, W. J., “Hybrid membrane materials comprising organic polymers with rigid dispersed phases”,  AIChE Journal., 50(2), 311 (2004).
  • Padey, , Chauhan,  R .S., “Membranes for Gas Separation”,  Progress in Polymer Science., 26, 853  (2001).
  • Caro,   Noack, M., “ Zeolite membranes – Recent developments and progress”, Microporous and Mesoporous Materials., 115, 215 (2008).
  • Hong, , “ Zeolite membranes for hydrogen purification and carbon dioxide removal”, Ph.D. Thesis, University of Colorado, 3256383, 2007.
  • Xu , X. Bao, Y.  Song, C.  Yang , W. Liu, J. Lin, L., “Synthesis, characterization and single gas permeation properties of NaA zeolite membrane”,  Membr. Sci., 249, 51 (2005).
  • Moore, T. T. Koros, W. J.,  “Non-ideal effects in organic–inorganic materials for gas separation membranes”, J. Mol. Struct., 739, 87 (2005).
  • Rodenas, T. van Dalen, Garcia-Perez, E.  Serra-Crespo, P.  Zornoza,  B. Kapteijn, F.  Gascon, J., “Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure-Performance Relationships in CO2/CH4 Separation Over NH2-MIL-53(Al)@PI”,  Adv. Funct. Mater. 24,  249 (2014).
  • Bae, T. H. Lee, J. S, Qiu, W. L, Koros, W. J. Jones, W. Nair, S., “A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal–Organic Framework Crystals”, Angew. CHEM., 122, 10059 (2010).
  • Robeson, M., “The upper bound revisited”,  J .Membr. Sci., 320, 390 (2008).
  • Kim, S. Pechar, T.W.  Marand,  , “Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation”, Desalination., 192, 330 (2006).
  • Kim, S. Chen, L. Johnson,  K.  Marand,  E., “Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment”, J. Membr. Sci., 294,147 (2007).
  • Aroon, A.  Ismail,  A. F.  Montazer-Rahmati,  M. M.  Matsuura,  T., “Effect of Raw Multi-Wall Carbon Nanotubes on Morphology and Separation Properties of Polyimide Membranes”, Separation Science and Technology., 45, 2287 (2010).
  • Cong,   Zhang,  J. Radosz,  M.  Shen, Y., “Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation “, J . Membr. Sci., 294, 178 (2007).
  • Kusworo, T. D. Ismail, A. F.  Budiyono, I. N. Widiasa,    Johari, S., “ Synthesis and Characterization of Polyimide-Zeolite Mixed Matrix Membrane for Biogas Purification”,  International Journal of Engineering Science., 1, 1 (2010).
  • Jiang, Y.  Chung, T. Kulprathipanja,  S.  Chung,  N. T. S., “An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation”, J. Membr. Sci.,  276, 113 (2006).
  • Erickson, . Erni, R. Lee,  Z.  Alem,  N.  Gannett,  W. Zettl,  A., “Determination of the local chemical structure of graphene oxide and reduced graphene oxide”, Adv. Mater.,  22, 4467  (2010).
  • Huang , C.  Wu,  Deng,  K. Tang,  W.  Kan,  E., “Improved permeability and selectivity in porous graphene for hydrogen purification”, Phys. Chem. Chem. Phys., 16, 25755 (2014).
  • Tao, Xue, Q.  Liu,  Z.  Shan,  M.  Ling, C. Wu,  T.  Li, X., “Tunable Hydrogen Separation in Porous Graphene Membrane: First-Principle and Molecular Dynamic Simulation”,  ACS Appl. Mater. Interfaces., 6, 8048 (2014).
  • Tian ,Z.  Mahurin,  M. Dai, S.  Jiang,  D. E., “Ion-Gated Gas Separation through Porous Graphene”,  Nano Lett., 17, 1802 (2017).
  • Zhang , Y . Balkus Jr, K. J, Musselman,  H. Ferraris, J. P., “Metal Organic Framework based Mixed Matrix Membranes: a solution for highly efficient CO2 capture?”,  J. Membr. Sci.,  325, 28 (2008).
  • Chew , T. L. Ahmad, L, Bhatia, S., “Ordered Mesoporous Silica (OMS) as an Adsorbent and Membrane for Separation of Carbon Dioxide (CO2)”,  Advances in Colloid and Interface Science., 153, 43 (2010).
  • Brady , R. Woonton, Gee, M. L.  O’Connor, A. J., “Investigation of sources and production methods of bioactive peptides effective on human health: A systematic review”,  Innovative Food Science & Emerging Technologies.,  9, 243 (2008).
  • Shen , Y. Lua, A.Ch., “ Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation”, Chemical Engineering Journal., 192, 201 (2012).
  • Weng, T. H. Tseng, H.  Wey,  M. Y.,  “Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane”,  J. Membr. Sci.,  369, 550 (2011).
  • Moghadam , F. Omidkhah,  R,  Vasheghani-Farahani,  E. Pedram,  M. Z.  Dorosti F., The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes.  Separation and Purification Technology.  77, 128 (2011).
  • Mueller, U. Schubert, M. Teich, F. Puetter,   Schierle-Arndt, K.  Pastre, J., “Metal–organic frameworks—prospective industrial applications”, J .Mater. Chem., 16, 626 (2006).
  • Zornoza,   Tellez, C.  Coronas,  J.  Gascon,  J.  Kapteijn,  F., “Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential”,  Microporous and Mesoporous Materials. 166, 67 (2013).
  • Dybtsev, Chun, H.  Yoon, S. H.  Kim, D.  K. “A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties”, Journal of the American Chemical Society., 126, 32 (2004).
  • Chen, B. Ockwig, N. W. Millward, A. R. Contreras,  S.  Yaghi,  O. M., “High H2 adsorption in a microporous metal-organic framework with open metal sites”,  Angew. Chem. Int. Ed.,  44, 4745 (2005).
  • Wong-Foy, G.  Matzger,  A. J.  Yaghi, O. M., “Exceptional H2 saturation uptake in microporous metal-organic frameworks”,  J. Am. Chem. Soc.,  128, 3494 (2006).
  • Furukawa , H. Yaghi,  M., “Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications”,  J. Am. Chem. Soc.,  131, 8875 (2009).
  • Ma, S., Zhou, H. C., “ Gas storage in porous metal-organic frameworks for clean energy applications”, Chem. Commun., 46, 44 (2010).
  • Achmann,   Hagen,  G.  mmerle, M. H. Malkowsky I., Kiener C., Moos R., Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic  frame- works. Chem. Eng. Technol. 2010;33:275–280.
  • Zacher, D. Shekhah,    Wo¨ ll, C.   Fischer, R. A., “Thin  films  of  metal-organic frameworks”,  Chem. Soc. Rev., 38, 1418 (2009).
  • Liu , Y. Ng, Z.  Khan, E. .A. Jeong,  K. Ching, C. b.  Lai,  Z., “Synthesis of continuous MOF-5 membranes on porous a-alumina substrates”,  Microporous  Mesopor-  ous Mater., 118, 296 (2009).
  • Yoo, Lai , Z.  Jeong,  H. K., “Fabrication of MOF-5 membranes using microwave- induced rapid seeding and solvothermal secondary growth”,  Microporous Mesoporous Mater., 123, 100 (2009).
  • Zhang, Y. F. Musselman,  H.  Ferraris,  J. P.  Balkus,  Jr.  K. J., “ Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS”,  J. Membr. Sci., 313, 170 (2008).
  • Perez, V. Balkus, Jr. K. J.  Ferraris, J. P.  Musselman, I .H., “Mixed-. Matrix Membranes Containing MOF-5 for Gas Separations”,  J. Membr. Sci., 328, 165 (2009).
  • Koros, J.  Mahajan,  R., “Pushing the limits on possibilities for large scale gas separation: which strategies?”, J. Membr. Sci., 175, 181 (2000).
  • Zhang,   Dai,  Y. Johnson, J. R.  Karvan,  O.  Koros,  W. J., “High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations”,  J. Membr. Sci.,  389, 34  (2012).
  • Ordon˜ez, J. C.  Balkus, Jr. K. J. Ferraris, J. P., “ Musselman I. H., Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes”, J .Membr. Sci., 361, 28 (2010).
  • Park, S. Ni,  Z. Coˆte,  A. P. Choi,  J. Y. Huang , R. Uribe-Romo,  F. J. Chae,  H. K. O’Keeffe,  M. Yaghi, O. M., “Exceptional chemical and thermal stability of zeolitic imidazolate frameworks”,  PNAS., 103, 10186 (2006).
  • Phan,   Doonan, Ch. J. Uribe-Romo , F. J. Knobler,  C. B.  O’Keeffe, M.  Yaghi, O. M., “Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks”,  Accounts of Chemical Research ., 43, 58 - 67 (2010).
  • Venna, R.  Carreon,  M. A., “Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation”,  Journal of the American Chemical Society., 132, 76 - 78 (2010).
  • Park, K. S., Ni, Z., Coˆte, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M. and Yaghi, O. M., “The ZIF crystal structures are based on the nets of seven distinct aluminosilicate zeolites: Tetrahedral Si(Al) and the bridging O are replaced with transition metal ion and imidazolate link, respectively”, , 103 (27), 10186 (2006).
  • McCarthy, C. Varela-Guerrero, V.  Barnett,  G. V.  Jeong,  H. K., “Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures”, Langmuir., 26, 14636 (2010).
  • Li , Y. S. Liang, F. Y.  Bux,  Feldhoff.  A. Yang, W. S.  Caro,  J., ”Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity”,  Angew. Chem. Int. Ed., 49, 548 (2010).
  • Hung,   Bux,  H. Steinbach,  F. Caro,  J., “ Molecular-Sieve Membrane with Hydrogen Permselectivity: ZIF-22 in LTA Topology Prepared with 3-Aminopropyltriethoxysilane as Covalent Linker”,  Angew. Chem. Int. Ed ., 49, 4958 (2010).
  • Huang , A. S. Dou, W.  Caro , J., “Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization”,  Am. Chem. Soc., 132, 15562 (2010).
  • Bux, H. Chmelik, Van Baten,  J. M.  Krishna,  R.  Caro,  J., “Novel MOF-Membrane for Molecular Sieving Predicted by IR-Diffusion Studies and Molecular Modeling”,  Adv. Mater.,  22, 4741 (2010).
  • Li, S. Liang,  F. Y.  Bux, H. G,  Yang, W. S.  Caro, J., “ Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation”,  J. Membr. Sci., 354, 48 (2010).
  • Park, S.  Ni, Z.  Côte , A. P.  Choi,  J. Y.  Huang,  R. D. Uribe-Romo,  F. J. Chae,  H. K. O’Keeffe, M. Yaghi, O. M., “ Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate  Frameworks. Proc. Nat. Acad. Sci. U.S.A., 103, 10186 (2006).
  • Ordon˜ez, M. J. C. Balkus ,Jr. K. J., Ferraris, J. P. Musselman, I. H., “Molecular sieving realized with ZIF-8/Matrimid (R) mixed -matrix membranes” , J .Membr. Sci., 361,  28  (2010).
  • Głowniak, S. Szczęśniak, B. Choma, Jaroniec, M., “Mechanochemistry: Toward green synthesis of metal–organic frameworks.,  46, 109 (2021).
  • Yang, Feifei, Z.  Yong, W. Chengyin,  Y. Jiangfeng ,Y.  Jinping,  L., “Recyclable ammonia uptake of a MIL series of metal-organic frameworks with high structural stability., 258, 170 (2018).
  • Seo, Y. K. Yoon,  W.  Lee, J. S.  Hwang, Y. K. Jun, C. H.  Chang, J. S. Wuttke,  S. Bazin, P. Vimont, A. Daturi,  M. Bourrelly, S. Llewellyn,  P. L. Horcajada,  P.  Serre, C. Férey, G., “ Energy-Efficient Dehumidification over Hierachically Porous Metal–Organic Frameworks as Advanced Water Adsorbents”,  Adv. Mater. 24, 806 (2012).
  • Horcajada,   Chalati,  T. Serre, C.  Gillet,  B.  Sebrie, C.  Baati,  T. Eubank,  J. F.  Heurtaux,  D. Clayette,  P. Kreuz,  C. Chang , J. S. Hwang, Y. K.  Marsaud,  V.  Bories,  P. N.  Cynober,  L.  Gil, S.  Férey,  G.  Couvreur, P.  Gref, R., “ Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging”,  Nat. Mater. 9, 172 (2009).
  • Horcajada, P., Chevreau, H., Heurtaux, D., Benyettou, F., Salles, F., Devic, T., Garcia-Marquez, A., Yu, C., Lavrard, H., Dutson, C. L., Magnier, E., Maurin, G., Elkaïm, E. and Serre, C., “Extended and functionalized porous iron(iii) tri- or dicarboxylates with MIL-100/101 topologies”, Commun., 50, 6872 (2014).
  • Leus, K. Bogaerts, T., De Decker,    Depauw,  H. Hendrickx,  K. Vrielinck, H.  Van Speybroeck, V. Van Der Voort,  P., “Systematic study of the chemical and hydrothermal stability of selected “stable” Metal Organic Frameworks”,  Microporous Mesoporous Mater., 226, 110 (2016).
  • Fang, Y., Wen, J., Zeng, G., Jia, F., Zhang, S., Peng, Z. and Zhang, H., “Effect of mineralizing agents on the adsorption performance of metal-organic framework MIL-100(Fe) towards chromium(VI)”, Eng. J., 337, 532 (2018).
  • Seo, K. Yoon,  J. W.  Lee,  J. S.  Lee,  U. H. Hwang , Y. K. Jun, C. H.  Horcajada,  P. Serre, C. Chang,  J. S., “ Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology “,  Microporous Mesoporous Mater., 157, 137  (2012).
  • Zou, Liu,  D., “Understanding the modifications and applications of highly stable porous frameworks via UiO-66”,  Materials today chem.,  12, 139 (2019).
  • UiO-66 Zirconium Building Bricks for Stable Metal Organic Frameworks, Strem: Catalog No. 40-1105, Zirconium 1,4-dic
  • Li, R Kuppler, R. J.  Zhou,  H. C., “ Selective gas adsorption and separation in metal–organic frameworks”, Chem. Soc. Rev.,  38, 1477 (2009).
  • Keskin, van Heest,  T. M.  Sholl, D. S., “ Can Metal–Organic Framework Materials Play a Useful Role in Large-Scale Carbon Dioxide Separations?”, ChemSusChem.,  3, 879 (2010).
  • Duren, Bae,  Y. S. Snurr, R. Q., “ Using molecular simulation to characterise metal–organic frameworks for adsorption applications”, Chem. Soc. Rev.,  38, 1237 (2009).
  • Calero , S. Martin-Calvo, Hamad,  S.  Garcia-Perez, E., “ On the performance of Cu-BTC metal organic framework for carbon tetrachloride gas removal”, Chem. Commun.,  47, 508 (2011).
  • Castillo, J. M. Vlugt, T. J. H.  Calero,  , “Understanding Water Adsorption in Cu−BTC Metal−Organic Frameworks”,  J. Phys. Chem. C., 112, 15934 (2008).
  • Martin-Calvo,   Garcia-Perez,  E.  Castillo, J. M.  Calero, S., “ Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks”,  Phys. Chem. Chem. Phys., 10, 7085 (2008).
  • Chui, S. S. Y. Lo, S. M. F. Charmant,  P. H.  Orpen, A. G.  Williams, I. D., “A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n”,  Science., 283, 1148 (1999).
  • Krishna, van Baten,  J. A., ”Investigating Cluster Formation in Adsorption of CO2, CH4, and Ar in Zeolites and Metal Organic Frameworks at Subcritical Temperatures”,  Langmuir., 26, 3981 (2010).
  • Garcia-Perez, E. Gascon,    Morales-Florez, V.  Castillo, J. M., Kapteijn, F. Calero, S., “Identification of Adsorption Sites in Cu-BTC by Experimentation and Molecular Simulation”, Langmuir., 25, 1725 (2009).
  • Babarao , R. Jiang,  W., “Diffusion and Separation of CO2 and CH4 in Silicalite, C168 Schwarzite, and IRMOF-1: A Comparative Study from Molecular Dynamics Simulation”, Langmuir.,  24, 5474 (2008).
  • Babarao,   Jiang,  J. W.  Sandler, S. I., “Molecular Simulations for Adsorptive Separation of CO2/CH4 Mixture in Metal-Exposed, Catenated, and Charged Metal−Organic Frameworks”,  Langmuir., 25, 5239 (2009).
  • Keskin, S. Liu, J. C.  Johnson , J. K. Sholl, D. S., “Atomically detailed models of gas mixture diffusion through CuBTC membranes”,  Microporous Mesoporous Mater.,  125, 101 (2009).