Document Type : Regular Article

Authors

Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran

Abstract

It is crucial to design and develop new polymers with desirable characteristics. Aromatic polyimides have been attracted more attention in comparison with other polymeric materials, because of their excellent properties, such as the high thermal stability, mechanical strength, and chemical resistance. In this work, two semi-aromatic polyimides (BCDA-mPDA and BCDA-Durene) were successfully synthesized from bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarbocylic dianhydride (BCDA), 1,3-phenylenediamine (mPDA), and 2,3,5,6-tetramethyl-1,4-phenylenediamine (Durene) to investigate the effect of methyl functional groups on the physicochemical and structural properties of the synthesized polyimides. The synthesized polyimides were characterized by the proton nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, inherent viscosity measurement, and solubility test. FTIR and 1H-NMR results confirmed the chemical structure of the synthesized polyimides. XRD results showed that the presence of bulky methyl groups has led to increasing amorphous regions in the polymer structure. In addition, these new polymers were soluble in various organic solvents such as dimethylformamide (DMF), dimethylsulfoxide (DMSO), and N-methyl-2-pyrrolidone (NMP). The inherent viscosity of the synthesized polyimides was 0.65 dl/g for BCDA-Durene and 0.96 dl/g for BCDA-mPDA, which indicates the moderate molecular weight of the polymers.

Keywords

Main Subjects

  • Sanaeepur, H., Ahmadi, R., Ebadi Amooghin, A. and Ghanbari, D., “A novel ternary mixed matrix membrane containing glycerol-modified poly (ether-block-amide) (Pebax 1657)/copper nanoparticles for CO2 separation”, Membr. Sci., 573, 234 (2019).
  • Ebadi Amooghin, A., Mashhadikhan, S., Sanaeepur, H., Moghadassi, A., Matsuura, T. and Ramakrishna, S., “Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMM): A new horizon for efficient CO2 separation”, Mater. Sci., 102, 222 (2019).
  • Sanaeepur, H., Ebadi Amooghin, A., Bandehali, S., Moghadassi, A., Matsuura, T. and Van der Bruggen, B., “Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering”, Polym. Sci., 91, 80 (2019).
  • Faghihi, K., Feyzi, A. and Nasr Isfahani, H., “Synthesis and characterization of new optically active poly(amide-imide)s based on N,N'-(bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic)-bis-L-2-aminobutyric acid”, Monomers. Polym., 13 (2), 131 (2010).
  • Mashhadikhan, S., Moghadassi, A., Ebadi Amooghin, A. and Sanaeepur, H., “Interlocking a synthesized polymer and bifunctional filler containing the same polymer's monomer for conformable hybrid membrane systems”, Mater. Chem. A, 8 (7), 3942 (2020).
  • Kripotou, S., Pissis, P., Sysel, P., Sindelar, V. and Bershtein, V., “Structure-property relationships in novel poly (imide-amide)-poly (ethylene glycol) hybrid networks”, Polymer, 47 (1), 357 (2006).
  • Liaw, D. J., Chang, F. C., Liu, J. H., Wang, K. L., Faghihi, K., Huang, S. H., Lee, K. -R. and Lai, J. -Y., “Novel thermally stable and chiral poly (amide-imide)s bearing from N,N'-(4,4'-diphthaloyl)-bis-l-isoleucine diacid: Synthesis and characterization”, Degrad. Stab., 92 (2), 323 (2007).
  • Mittal, V., High performance polymers and engineering plastics, John Wiley & Sons Inc., New York, p. 452 (2011).
  • O'Harra, K. E., Kammakakam, I., Devriese, E. M., Noll, D. M., Bara, J. M. and Jackson, E. M., “Synthesis and performance of 6FDA-based polyimide-ionenes and composites with ionic liquids as gas separation membranes”, Membranes, 9 (7), 79 (2019).
  • Abdulhamid, M. A., Ma, X., Ghanem, B. S. and Pinnau, I., “Synthesis and characterization of organo-soluble polyimides derived from alicyclic dianhydrides and a dihydroxyl-functionalized spirobisindane diamine”, ACS Appl. Polym. Mater., 1 (1), 63 (2018).
  • Hasegawa, M., Mita, I., Kochi, M. and Yokota, R., “Charge-transfer emission spectra of aromatic polyimides”, Polym. Sci., Polym. Lett., 27 (8), 263 (1989).
  • Hasegawa, M., Kochi, M., Mita, I. and Yokota, R., “Molecular aggregation and fluorescence spectra of aromatic polyimides”, Polym. J., 25 (4), 349 (1989).
  • Hasegawa, M. and Horie, K., “Photophysics, photochemistry, and optical properties of polyimides”, Polym. Sci., 26 (2), 259 (2001).
  • Matsumoto, T. and Kurosaki, T., “Soluble and colorless polyimides from bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic 2,3:5,6-dianhydrides”, Macromolecules, 30 (4), 993 (1997).
  • Liaw, D. -J., Wang, K. -L., Huang, Y. C., Lee, K. -R., Lai, J. -Y. and Ha, C. -S., “Advanced polyimide materials: Syntheses, physical properties and applications”, Polym. Sci., 37 (7), 907 (2012)
  • Ghosh, A., Sen, S. K., Banerjee, S. and Voit, B., “Solubility improvements in aromatic polyimides by macromolecular engineering”, RSC Adv., 2 (4), 5900 (2012).
  • Wang, Z., Zhang, B., Yu, H., Sun, L., Jiao, C., Liu, W., “Microporous polyimide networks with large surface areas and their hydrogen storage properties”, Commun., 46 (41), 7730 (2010).
  • Li, G. and Wang, Z., “Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors”, Macromolecules, 46 (8), 3058 (2013).
  • Shen, C., Bao, Y. and Wang, Z., “Tetraphenyladamantane-based microporous polyimide for adsorption of carbon dioxide, hydrogen, organic and water vapors”, Commun., 49 (32), 3321 (2013).
  • Ahmad, M. Z., Martin-Gil, V., Perfilov, V., Sysel, P. and Fila, V., “Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation”, Purif. Technol., 207, 523 (2018).
  • Yan, J., Zhang, B. and Wang, Z., “Monodispersed ultramicroporous semicycloaliphatic polyimides for the highly efficient adsorption of CO2, H2 and organic vapors”, Chem., 7 (47), 7295 (2016).
  • Jusoh, N., Yeong, Y. F., Lau, K. K. and Shariff, A. M., “Enhanced gas separation performance using mixed matrix membranes containing zeolite T and 6FDA-durene polyimide”, Membr. Sci., 525, 175 (2017).
  • Boroglu, M. S. and Yumru, A. B., “Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation”, Purif. Technol., 173, 269 (2017).
  • Sulub-Sulub, R. Loria-Bastarrachea, M. I., Santiago-Garcia, J. L. and Aguilar-Vega, M., “Synthesis and characterization of new polyimides from diphenylpyrene dianhydride and ortho methyl substituted diamines”, RSC Adv., 8 (56), 31881 (2018)
  • Krishnan, P. S. G., Vora, R. H., Veeramani, S., Goh, S. H. and Chung, T. -S., “Kinetics of thermal degradation of 6FDA based copolyimides-I”, Degrad. Stab., 75 (2), 273 (2002).
  • Ghaemy, M. and Khajeh, S., “Organosoluble and thermally stable polyimides derived from a new diamine containing bulky-flexible triaryl pyridine pendent group”, Chinese J. Polym. Sci., 29, 465 (2011).
  • Amini Nasab, S. M., Alizadeh, R. and Ghaemy, M., “Synthesis and characterization of organosoluble polyetherimides with bulky triaryl imidazole moiety: Study of photophysical properties and kinetic of thermal degradation”, Sci. Ser. B, 54, 30 (2012).
  • Heck, R., Qahtani, M. S., Yahaya, G. O., Tanis, I., Brown, D., Bahamdan, A. A., Ameen, A. W., Vaidya, M., Ballaguet, J. M., Alhajry, R., Espuche, E. and Mercier, R., “Block copolyimide membranes for pure-and mixed- gas separation”, Purif. Technol., 173, 183 (2017).
  • Ghaemy, M. and Movagharnezhad, N., “Synthesis and properties of polyimides derived from a new diamine containing bulky-flexible pendent group”, Sci. Ser. B, 53 (5-6), 332 (2011).
  • Pan, F., Peng, F. and Jiang, Z., “Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation”, Eng. Sci., 62 (3), 703 (2007).