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 Biodiesel, as a renewable and environmentally friendly fuel, which has 
gained great popularity in recent years, is a feasible alternative to fossil 
diesel. However, due to some undesirable properties such as higher 
viscosity, biodiesel must be blended with diesel in order to be utilizable 
in a diesel engine. Therefore, a reasonable approach is required for 
predicting the diesel-biodiesel blend properties. This study tries to 
estimate two substantial properties of the blend, i.e. kinemattic viscosity 
(KV) and cetane number (CN), through neural network (NN) and 
empirical models which use the properties of pure biodiesel (kinematic 
viscosity, boiling point, evaporation point, flash point, pour point, heat 
of combustion, cloud point, and specific gravity) as independent 
variables. In this regard, a three-layer feed-forward network with 
varying input parameters, training algorithms, transfer functions, and 
hidden neurons has been examined to predict the KV and CN of the 
diesel-biodiesel blend. Besides, the prediction capability of thirty 
empirical equations is investigated to determine the top equations 
describing the properties of the blend. The result reveals that an ANN 
with three input parameters of the concentration (%),CN and cloud point 
of the biodiesel has the best prediction of CN with an R-value of 0.9961. 
Moreover, NN estimates the KV of the blend with the highest correlation 
coefficient of 0.9985. The results corresponding to empirical equations 
also indicate that fractional-exponential equations are the best 
describer of the CN and KV of the blend with R-values of 0.9947 and 
0.9980 respectively. 
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1. Introduction 
For several decades, fossil fuels have been 

fundamental drivers of technological, social, 
and economic growth. However, the depletion 
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of fossil fuel reserves, their unfavorable 
environmental effects, and the increase in 
fossil fuel prices are the main alarms, which 
have persuaded governments and scholars to 
find alternative energy sources [1-4]. 
Biodiesel, as a feasible and renewable source 
of energy, is the most potent alternative fuel to 
fossil diesel that has grabbed the attention of 
researchers, in recent years [1, 4-6]. Biodiesels 
are the mono-alkyl esters of long-chain fatty 
acids and refer to any diesel fuel substitutes 
that are derived from a variety of natural 
feedstock such as animal fat, vegetable oil, 
microalgae, and waste oil [3, 5, 7]. 
Biodegradability, renewability, availability, 
higher combustion efficiency, lower toxicity, 
and having no content of sulfur are worth being 
mentioned as some of the benefits of biodiesel 
over the conventional diesel and which make 
biodiesel a good candidate for the 
transportation sector. Utilizing biodiesel not 
only reduces greenhouse gas emissions but 
also improves the characteristics of diesel 
engines like brake power, brake specific fuel 
consumption, and brake torque [2, 5, 6, 8]. 
Also, due to its complete miscibility, biodiesel 
can be used as pure or blended with petroleum 
diesel in a diesel engine without any engine 
modifications being needed [9, 10]. Although 
there is no limitation in blending biodiesel with 
diesel, blending is not sufficient for a higher 
proportion of biodiesel. The main reason 
behind this is that the viscosity, density, and 
price of biodiesel are higher than those of 
diesel which lead to poor atomization, 
incomplete combustion, and higher final cost 
[11-13]. Therefore, it is crucial to determine 
the properties of the diesel-biodiesel blends 
experimentally or through mathematical 
models in order to choose a proper 
composition that is reasonable to be utilized in 
a diesel engine. Two main important diesel-

biodiesel properties that considerably affect 
the engine performance are cetane number and 
viscosity. The cetane number indicates the 
potential of fuel to auto-ignite in a combustion 
chamber. A fuel with a higher cetane number 
shortens the ignition delay and at the same time 
increases the performance of the diesel engine 
in terms of engine stability, noise level, and 
exhaust emissions. It should be noted that 
biodiesel normally has a higher cetane number 
(between 45 and 67) than the standard diesel 
fuel (between 40 and 49) [14, 15]. On the other 
hand, fuels with lower viscosity are favorable 
for diesel engines. Lower viscosity facilitates 
the atomization of the fuel spray and reduces 
the ignition delay period, while a higher 
viscosity increases the required energy for 
pumping fuel, results in poor fuel atomization, 
and redoes the efficiency of the engine [10, 16-
18]. 
   Despite its accuracy, achieving a 
comprehensive data set of the properties of the 
diesel-biodiesel blend through an experimental 
approach is costly in terms of money, time, and 
effort. So, as a cheaper, fast, and feasible 
method, a mathematical model is the best 
alternative to evaluate diesel-biodiesel 
properties [9, 13, 15]. Empirical equations and 
artificial neural network models have 
successfully been used for estimating the 
physical and chemical properties of diesel and 
biodiesel in various applications [19-23]. An 
Artificial Neural Network (ANN) is a 
computational model of nervous systems of 
which the capabilities of producing solutions 
for various linear and nonlinear problems are 
well documented. A neural network consists of 
the three main components including an input 
layer, a processing (hidden) layer, and an 
output layer, however, NN has other 
influencing components such as neurons, 
transfer function, and activation function that 
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significantly affect its performance. It is worth 
mentioning that there is no definite method to 
determine a network’s components, and most 
of the time they are selected by the trial-and-
error method [12, 24-26]. Alternatively, using 
empirical equations is another popular method 
for predicting the properties of the diesel-
biodiesel blend. They are mathematical 
equations of which free parameters are 
specified by a given set of experimental data. 
An empirical mathematical model makes a 
relationship between one dependent variable 
and a set of other independent variables; thus 
allowing new data to be predicted. 
   Several studies can be found in the published 
works that have developed mathematical 
approaches to predict the characteristics of the 
blend. For example, Ibham, et al. [15] 
examined and predicted the cetane index of 
biofuel-diesel blends using both empirical 
mathematical and artificial neural network 
models. This study discovered that a 
feedforward backpropagation network with 4 
input, 10 hidden, and 1 output neurons is the 
best predictor. Furthermore, they showed that, 
among empirical mathematical models, a 3rd 
order polynomial model is the best model to 
predict the cetane index. In another study, 
Fernanda et.al [27] reliably predicted the 
cetane index, flash point, and sulfur content of 
the diesel-biodiesel blend using an artificial 
neural network. Mert and Atilla [28] 
performed an experimental study to determine 
the density and viscosity of various diesel-
vegetable oil binary blends at diverse 
temperatures (278.15-343.15 K) and 
subsequently predicted the experimental data 
using empirical models. They developed new 
rational and exponential models based on 
temperature to estimate the experimentally 
measured data. According to their results, for 
the viscosity data, the best correlation was 

achieved by the rational model and taking into 
account the lowest maximum relative error 
criteria. Nevertheless, they discovered that the 
exponential model provided the most precise 
correlation for the density data of binary 
blends. In another study, Mert et al. [29] 
produced biodiesel from waste cooking oil and 
blended it with commercial diesel fuel at 
various volume percentages. They measured 
the kinematic viscosity of the prepared blends 
at the temperature in the range of 273.15 to 
373.15 K. Their study demonstrated that a 
rational model with the functionality of 
temperature and biodiesel fraction was the 
most suitable for predicting the kinematic 
viscosity. They also found that the variation of 
the kinematic viscosity with biodiesel fraction 
tends to be linear by increasing the 
temperature. Mujtaba et al. [30] measured the 
density and viscosity of individual fuels and 
ternary biodiesel experimentally within at the 
temperature of 281.51-348.15 K. They 
subsequently developed four density and 
viscosity models to predict the density and 
viscosity of ternary biodiesel blends at varying 
blend ratios and temperatures. The results of 
their stusdies revealed that the exponential 
regression model was more proficient in 
estimating the density and viscosity of ternary 
fuel blends. Salah and Babak [13] estimated 
the kinematic viscosity of diesel-biodiesel 
blends using the adaptive neuro-fuzzy 
inference systems (ANFIS) and least squares 
support vector machines (LSSVM). They 
revealed that the predictions of LSSVM with 
polynomial kernel match very well the 
experimental data. In other research [16], the 
viscosity of diesel-biodiesel mixtures was 
evaluated through four neural network models 
including the generalized regression neural 
network, radial basis neural networks, multi-
layer perceptron neural network, and cascade 
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feed-forward neural network. Based on the 
results of their work, the cascade feed-forward 
neural network model offers an excellent 
agreement with experimental data. Jatinder 
and Ajay [11] examined several neural 
network architectures, with various training 
algorithms to predict the different properties, 
including the flash point, fire point, viscosity, 
and density, of diesel and biodiesel blends. It 
was revealed that the neural network having an 
architecture of 2-7-4 with Levernberg-
Marquardt algorithm offers the best 
approximation for the properties of diesel-
biodiesel blends. Ertan and Mustafa [17] 
blended two different diesel fuels with the 
biodiesels, produced from six different 
vegetable oils, and tried to predict the key 
properties, such as density and viscosities, of 
the blend by generalized equations and a 
mixing equation. In their study, for all blends, 
an excellent agreement between the measured 
and estimated values of the density and 
viscosities was observed. 
   In the present work, the efficiency of NNs 
and empirical equations, in accurately 
predicting the kinematic viscosity (KV) and 
cetane number (CN) of diesel-biodiesel blends 
at different degrees of blends, are evaluated.  
The NNs used in this study have different 
architectures with two or three inputs in which 
the first and second inputs are constant 
(biodiesel concentration (%) and the kinematic 
viscosity (cetane number) of biodiesel). 
However, the third input parameter is not pre-
specified and is selected from among other 
properties of the biodiesel including the 
boiling point, evaporation point, flash point, 
pour point, heat of combustion, cloud point, 
and specific gravity. So the first goal of this 
work is to specify a three-input NN with the 
highest performance and to select the third 
effective input parameter leading to the best 

performance of NN. As a second goal, a wide 
range of two-variable equations will be 
examined to find the best empirical equations. 
In this regard, finding the parameters of 
suggested equations is determined using 
nonlinear regression. Finally, the best 
performance of NNs and empirical equation 
are compared. 

2. Material and method 
2.1. Experimental data 
In this study, 66 samples of diesel-biodiesel 
blends consisting of six different methyl esters 
including soybean methyl ester (SME), canola 
methyl ester (CME), edible tallow methyl ester 
(ETME), inedible tallow methyl ester (ITME), 
low free fatty acid yellow grease methyl ester 
(LYGME), and high free fatty acid yellow 
grease methyl ester (HYGME) with varying 
concentrations (%) (0 to 100) are used to 
conduct the modeling procedure. These 
samples are collected from experimental data 
reported in Kinasts’s research [31]. It consists 
of biodiesel concentration (%) in the diesel-
biodiesel blend and the properties of pure 
biodiesel including the cetane number, boiling 
point, evaporation point, flash point, pour 
point, heat of combustion, cloud point, 
kinematic viscosity, and specific gravity. Also, 
the kinematic viscosity and cetane number of 
diesel-biodiesel blends were reported 
comprehensively. 

2.2. Neural network models 
In this study, a three-layer feed-forward 
network has been used to predict the KV and 
CN of diesel-biodiesel blends. In the case of 
KV, once, the neural network’s efficiency is 
investigated considering two inputs (the 
concentration (%) of the biodiesel and the KV 
of biodiesel) and once again it is examined 
with three inputs. Regarding a three-input NN, 
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the concentration (%) and KV of the biodiesel 
are considered as the first and second inputs to  
the NN, while the third input is selected from 
the parameters of the cetane number, boiling 
point, evaporation point, flash point, pour 
point, heat of combustion, cloud point, and 
specific gravity. Also, the KV of the blend is 
defined as the output layer. For the hidden 
layer, four different transfer functions 
including log-sigmoid (logsig), tangent-
sigmoid (tansig), linear (purelin), and radial 
basis (radbas) are examined to select the best 
one. Similarly, the number of neurons in the 
hidden layer ranges from 1 to 15 to specify an 
optimum hidden layer size. Finally, the 
constructed network is trained using four 
different training algorithms i.e. gradient 
descent, BFGS quasi-Newton Levenberg-
Marquardt, and scaled conjugate gradient. 
Similar to KV, the CN of the blend is 
determined through a similar procedure. 
However, the first input of ANN is the 
concentration (%) of the biodiesel, the second 
is the CN of biodiesel, and the last input is 
selected from other properties of the biodiesel 
including the kinematic viscosity, boiling 
point, evaporation point, flash point, pour 
point, heat of combustion, cloud point, and 
specific gravity. Also, the CN of the blend is 
defined as the output layer. In this study, the 
reported 66 samples are divided randomly with 
the ratios of 0.7, 0.15, and 0.15, for training, 
validation, and test respectively. To achieve 
more precise results, NN is constructed and 
trained 20 times and the average value is 

reported. It leads to gaining a reliable  
performance of the network. 

2.3. Empirical models 
Several two-variable mathematical equations 
are utilized to predict the KV and CN of the 
blend. In order to find the best empirical 
equation and its constants, an unconstrained 
nonlinear optimization method is applied. The 
method, which uses the Nelder-Mead simplex 
algorithm, finds the constants of equations by 
minimizing the sum of the squares of the 
differences between the results of the 
calculation and the experiment. The proper 
empirical equation describing the relationship 
between the KV of the blend and two 
independent variables, i.e. the concentration 
(%) and the KV of the biodiesel, is detected by 
checking thirty different empirical equations 
given in Table 1. In these equations, Z denotes 
the KV of the blend, and X and Y indicate the 
concentration (%) and the KV of the biodiesel 
respectively. Each proposed empirical model 
is fitted to the existing experimental KV values 
and compared with each other by determining 
the mean squared error, correlation coefficient, 
and coefficient of determination. The same 
strategy is used to find the best empirical 
model describing the relationship between the 
CN of the blend and its variables including the 
concentration (%) and CN of the biodiesel. In 
the case of CN and considering equations in 
Table 1, Z represents the CN of the blend, and 
X and Y indicate the concentration (%) and CN 
of the biodiesel respectively. 

 

Table 1 
List of empirical equations used for describing the KV and CN of the diesel-biodiesel 
blend. 

Eq. Empirical relations 

(1) 2 2
1 2 3 4 5Z = A X + A X + A Y + A Y + A  
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(2) 2
1 2 3 4Z = A X + A X + A Y + A  

(3) 1 2 3Z = A X + A Y + A  

(4) 2
1 2 3Z = A X + A Y + A  

(5) 2
1 2 3 4Z = A X + A Y + A Y + A  

(6) 3 2 2
1 2 3 4 5 6Z = A X + A X + A X + A Y + A Y + A  

(7) 3 2 3 2
1 2 3 4 5 6 7Z = A X + A X + A X + A Y + A Y + A Y + A  

(8) 2 2 2 2 3
1 2 3 4 5 6 7 8 9Z = A + A X + A Y + A X + A XY + A Y + A X Y + A XY + A Y  

(9) 2 2 2 2
1 2 3 4 5 6 7 8Z = A + A X + A Y + A X + A XY + A Y + A X Y + A XY  

(10) 2 2 2
1 2 3 4 5 6 7Z = A + A X + A Y + A X + A XY + A Y + A X Y  

(11) 2
1 2 3 4 5Z = A + A X + A Y + A XY + A Y  

(12) 2 2
1 2 3 4 5 6Z = A X + A X + A Y + A Y + A XY + A  

(13) 9 10A A3 2 64
1 2 3 82

5 7

AAZ = A Y + A Y + A Y + + + A Y X
(X + A ) (X + A )

 

(14) 7 8A A2 4
1 62

3 5

A AZ = A Y + + + A Y X
(X + A ) X + A

 

(15) 
2

5

A
1

6 7 8 9 10 11A
3 4

A YZ = + A exp (A Y + A ) + A exp (A X + A )
A + A X

 

(16) 
A2

4A
1 3 5Z = A Y + A X + A  

(17) 1 2 3 4 5 6Z = A exp (A Y + A ) + A exp (A X + A )  

(18) 
3

6

A
1 2

7 8 9 10 11 12A
4 5

A + A YZ = + A exp (A Y + A ) + A exp (A X + A )
A + A X

 

(19) 2
1 2 3 4 5Z = A exp (A Y + A X ) + A ln (X + A )  

(20) 
2

5

A
1

A
3 4

A YZ =
A + A X

 

(21) 1 2 3 4 5 6Z = A exp (A Y + A ) + A exp (A X + A )  

(22) 32 AA
1 3Z = A X Y + A  

(23) 6 72 4 A AA A
1 3 5 8Z = A X + A X + A X Y + A  

(24) 32 AA
1 4 5 6 7 8 9Z = A X Y + A + A exp (A X + A Y + A XY + A )  

(25) 1 2 3 4 5 6Z = A + A exp (A X + A Y + A XY + A )  

(26) 32 AA
1 4 5 6 7 8Z = A X Y exp (A X + A Y + A XY + A ) + A  

(27) 2A
1 3 4 5 6 7Z = A X exp (A X + A Y + A XY + A ) + A  
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(28) 2 4A A
1 3 5Z = A X + A ln (Y ) + A  

(29) 5 6A A3 2 7
1 2 3 4

8

AZ = A Y + A Y + A Y + A Y X +
X + A

 

(30) 54 AA2 6
1 2 3

7

AZ = A Y + A Y + A Y X +
X + A

 

 
2.4. Performance evaluation 
To evaluate the prediction accuracy of 
artificial neural networks and empirical 
equations three statistical parameters; the 
mean square error (MSE), correlation 

coefficient (R), and coefficient of 
determination (R2) are used. Eq. 31 and eq. 32 
represent formulas for MSE and R parameters 
respectively. The best model holds the higher 
R (or R2) and the lower MSE. 

 
n

2
exp,i pred,i

i=1

1MSE = (Z - Z )
n∑

 (31) 

( )( )
( ) ( )

N
exp,i exp,mean pred,i pred,meani=1

2 2N N
exp,i exp,mean pred,i pred,meani=1 i=1

Z - Z Z - Z
R =

Z - Z Z - Z

∑
∑ ∑

 

(32) 

 
where Z stands for the KV (or CN) of the 
blend, and "pred" and "exp" subscripts are 
abbreviations for predicted and experimental 
values respectively. The subscript "i" stands 
for the "ith" sample and N is the number of 
samples. 

3. Results and discussion 
3.1. ANN results 
3.1.1. Cetane number 
Figure 1 demonstrates the R2 values for NNs 
with different combinations of training 

algorithms and transfer functions. In these 
NNs, the number of hidden layer neurons is 
varied from 1 to 15, and the input neuron size 
is 2. Results show that an ANN model with the 
Levenberg Marquardt training algorithm, the 
tansig transfer function, and the hidden neuron 
size of 10 leads to R and R2-values of 0.9901 
and 0.9803 respectively. It has a better 
performance for predicting the CN of the blend 
compared to other NNs trained by gradient 
descent, BFGS quasi-Newton, and scaled 
conjugate gradient with two inputs. 
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Figure 1. R2-values for different combinations of transfer functions, training algorithm, and neuron size 
with two inputs (a) Levenberg Marquardt, (b) gradient descent, (c) BFGS, and (d) conjugate gradient. 

 
The highest R and R2 and the lowest MSE 
values for different training algorithms of a 
two-input ANN are shown in Table 2. As it can 
be seen, Levenberg Marquardt not only has 

higher R and R2 values but also possess the 
minimum MSE value compared to other 
training algorithms. Thus, it is the best training 
algorithm for network training. 

 

Table 2 
Best predicting performance of different training algorithms of a two-input ANN. 

MSE R R2 Neuron size Transfer func. Training func. 
0.4247 0.9901 0.9803 10 Tansig Levenberg Marquardt 

37.1874 0.7702 0.5932 1 Logsig Gradient descent 
0.5355 0.9863 0.9727 9 Purelin BFGS 
1.5258 0.9724 0.9456 10 Tansig Scaled conjugate gradient 

 
   Table 3 lists the parameters of the optimum 
NN model for predicting the CN of the blend 
with different third inputs. As stated before, 
the first and second input parameters are 
constant (i.e. the concentration (%) and CN of 
the biodiesel) while the third input parameter 
is chosen by trial-and-error. As shown, the 
quality of the prediction of an ANN with three 
input parameters including the concentration 
(%), CN and cloud point of the biodiesel is far 
better than that of other ANNs listed in Table 
3. In this case, the training algorithm, transfer 
function, and neuron size are Levenberg 
Marquardt, purelin, and 4 respectively. 
Besides, the highest R and R2 values (0.9961 
and 0.9922) and lowest MSE value (0.1459) of 

this ANN depict that it is also more efficient, 
than the NN with two inputs, in the modeling 
of the CN of the diesel-biodiesel blend. 

3.1.2. Kinematic viscosity 
Table 4 summarizes the results of different NN 
architectures with two and three inputs. In all 
of these networks, the first input parameter is 
the concentration (%) of the biodiesel and the 
second one is the KV of the biodiesel. The 
results show that the third input parameter of 
the best NN for the present problem is the 
cloud point. It has 8 neurons with the transfer 
function of tansig, and has been trained by 
Levenberg Marquardt having the minimum 
overall mean square error of 0.0032, and R and 
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R2-values of 0.9985 and 0.9971. Besides, 
ANNs with the third input parameter of the 
boiling point and pour point are the second and 
third top ANNs describing experimental data 
very well. Moreover, for all ANNs the 
Levenberg Marquardt training algorithm is 
more suitable than other examined training 

algorithms. It should be noted that the last row 
in Table 4 is allocated to a NN with 2 inputs. 
Although the ANN with two inputs also fits 
very well with existing data, it has lower 
performance compared to the most of three-
input networks. 

 

Table 3 
Statistical coefficients and parameters of the optimum NNs with different third inputs for predicting 
cetane number. 

MSE 
R 

R2 
Neuron 

size 
Transfer 

func. 
Training func. Third input 

0.6646 0.9826 0.9656 9 Purelin Levenberg Marquardt Boiling point 
0.5985 0.9882 0.9766 8 Radbas Levenberg Marquardt Evaporation point 
0.3636 0.9919 0.9838 9 Tansig Levenberg Marquardt Flash point 
0.5013 0.9897 0.9796 11 Tansig Levenberg Marquardt Pour point 
0.5160 0.9873 0.9747 7 Radbas Levenberg Marquardt Heat of combustion 
0.1459 0.9961 0.9922 4 Purelin Levenberg Marquardt Cloud point 

0.4226 
0.9908 

0.9816 8 Tansig Levenberg Marquardt 
Kinematic 
viscosity 

0.2726 0.9940 0.9880 8 Logsig Levenberg Marquardt Specific gravity 
 
 

Table 4 
Statistical coefficients and parameters of the optimum NNs with different third inputs for predicting 
kinematic viscosity. 

MSE 
R 

R2 
Neuron 

size 
Transfer 

func. 
S Third input 

0.0043 0.9982 0.9965 8 Radbas Levenberg Marquardt Boiling point 
0.0047 0.9978 0.9957 4 Tansig Levenberg Marquardt Evaporation point 
0.0050 0.9979 0.9959 6 Tansig Levenberg Marquardt Flash point 
0.0045 0.9982 0.9964 6 Purelin Levenberg Marquardt Pour point 
0.0058 0.9975 0.9950 4 Radbas Levenberg Marquardt Heat of combustion 
0.0032 0.9985 0.9971 8 Tansig Levenberg Marquardt Cloud point 
0.0059 0.9974 0.9949 5 Logsig Levenberg Marquardt Cetane number 
0.0063 0.9973 0.9947 5 Radbas Levenberg Marquardt Specific gravity 
0.0054 0.9978 0.9957 7 Purelin Levenberg Marquardt - 

 
3.2. Empirical relations 
3.2.1. Cetane number 
The empirical modeling result indicates the 
excellent performance of the 18th, 14th, and 27th 

empirical equations for describing the CN of 
the blend. The regression constants for these 
equations can be observed in Table 5. Also, the 
statistical coefficients of the top five empirical 
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equations are summarized in Table 6. As the 
best predictor model, the 18th empirical model, 
which is a function of the concentration (%) 

and CN of the biodiesel, has R, R2 and MSE 
values of 0.9947, 0.9894, and 0.0959 
respectively. 

 

Table 5 
Regression constants for the top three empirical equations for predicting the CN of the blend. 

A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 Eq. 

5.24 -0.0102 -0.0562 1.50 0.0084 8.12 3.70 -1.18e-5 144.89 3.26 -0.0023 1046.21 18 

- - - - 22.06 6.20 7.074 56.45 17582 94.95 -2369797 -0.0277 14 

- - - - - 47.03 -5.9946 0.0019 -0.1043 -0.1073 0.9368 14468.06 27 
 
 

Table 6 
Statistical coefficients of the top five empirical equations for predicting cetane number. 

MSE R R2 Eq. 

0.0959 0.9947 0.9894 18 

0.1594 0.9912 0.9824 14 

0.1622 0.9910 0.9820 27 

0.1956 0.9891 0.9784 29 

0.1963 0.9891 0.9783 30 

 
   The capability of this empirical model is 
further supported by Figure 2a and Figure 2b 
showing the real and predicted cetane 
numbers. As shown in Figure 2a, the model fits 
the experimental CN of six different biodiesels 
with varying concentrations, very well. Also, 
the illustration of experimental data versus the 

predictions of the 18th empirical model is given 
in Figure 2b. Since, the diagonal line in this 
figure is corresponding to a relative error of 
zero, the triangular markers aggregation 
around this line is another robust justification 
for the excellent performance of the proposed 
empirical equation. 
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Figure 2. Regression plots for the experimental CN and the CN predicted by the 18th empirical equation. 

 
3.2.2. Kinematic viscosity 
Here, the best empirical equations correlating 
independent variables (the concentration (%), 
and KV of the biodiesel) with the KV of the 
blend are stated. As a result, the 18th, 14th, and 
15th empirical equations efficiently estimate 
the KV of the blend. The regression constants 
for these equations can be observed in Table 7. 
Also, Table 8 represents the statistical 
parameters of the top five empirical relations 
that sufficiently predict the KV of the blend. It 

is obvious that the predicted values from the 
18th model are in best agreement with the 
experimental data because of its highest R 
(0.9980), R2 (0.9960), and lowest MSE 
(0.0021) values. However, other equations (14, 
15, 13, and 29) approximately predict the 
experimental values as efficiently as the 18th 
equation. It also seems the 29th equation may 
be relatively flexible and simple as compared 
to other equations because it has a simpler 
form and less regression constant. 

 

Table 7 
Regression constants for the top three empirical equations for predicting the KV of blend. 

A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 Eq. 

-16/788 -0/5149 7837631 1/3215 -0/8990 14/893 0/3754 -0/0026 0/0215 -3/7432 -5/9378 0/0444 18 

- - - - 1/0438 1/3525 0/0034 14/60 198/20 26/34 -7696/8 -0/0002 14 

- 6/1471 0/4169 0/0007 1/4156 0/0196 0/5573 -0/5105 2/0016 -0/1062 1/7560 0/0145 15 
 
 

Table 8 
Statistical coefficients of the top five empirical equations for predicting kinematic viscosity. 

MSE R R2 Eq. 

0.0021 0.9980 0.9960 18 
0.0022 0.9979 0.9958 14 
0.0023 0.9978 0.9956 15 
0.0026 0.9976 0.9952 13 
0.0027 0.9975 0.9950 29 
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3.3. Comparing models 
In a comparison between the results obtained 
from empirical equations and NNs in 
predicting the CN, the best neural network 
model with the R-value of 0.9961 offers better 
prediction than the best empirical equation 
with the R-value of 0.9947. Also, in the case of 
KV, the best obtained NN and empirical 
equation have R-values of 0.9985 and 0.9980 
respectively, which indicate that NN has 
slightly better accuracy, and consequently 
providing the best agreement between the 
experimental KV and predicted values of all 
the examined models in this study. 

4. Conclusions 
In this study, several NNs and empirical 
models are examined in order to predict the 
kinematic viscosity of the diesel-biodiesel 
blend and its cetane number using the 
experimental data of diesel-biodiesel samples 
collected from literatures. As a result, for both 
the kinematic viscosity and cetane number of 
the diesel-biodiesel blend, the proposed NN 
model with 3 inputs has higher prediction 
accuracy than NNs with 2 inputs. The best 
ANN configuration for predicting the cetane 
number of the blend comprises three input 
parameters, namely, the concentration (%), 
CN and cloud point of the biodiesel. This 
configuration uses Levenberg Marquardt as 
the training algorithm, purelin as the transfer 
function, and four neurons as the neuron size. 
In this case, the resulting R value is the highest 
at 0.9961, while the MSE value is the lowest at 
0.1459. On the other hand, the best ANN 
model for estimating the kinematic viscosity of 
the blend uses eight neurons with tansig as the 
transfer function and Levenberg Marquardt as 
the training algorithm. Selecting the 
concentration (%), KV and cloud point of the 
biodiesel, in this case, offers the best statistical 

parameters, i.e., the minimum MSE vlaue of 
0.0032, and R value of 0.9985. Furthermore, an 
empirical equation that consists of exponential 
and fractional terms holds the highest 
performance among all the investigated 
empirical equations in the prediction of either 
the CN or the KV of blend. In the case of 
cetane number, the results indicated that when 
the selected empirical model is a function of 
the concentration (%) and CN of the biodiesel, 
the R and MSE values are 0.9947 and 0.0959 
respectively. Additionally, the empirical 
equation that best fits the experimental 
kinematic viscosity data is a function of the 
concentration (%) and kinematic viscosity of 
the biodiesel, with an R value of 0.9980 and an 
MSE value of 0.0021. This study indicated the 
high ability of NN and empirical equations in 
modeling the CN and KV of the diesel-
biodiesel blend, however, the accuracy of NNs 
is higher than empirical equations in terms of 
R, R2 and MSE values. 
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