Document Type : Full article

Authors

1 Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O.Box:15875-4413, Tehran, Iran. Tel.:+982164545810.

2 Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O.Box: 15875-4413, Tehran, Iran.

Abstract

Novel electrospun nanofibrous CS-PEO nerve conduits containing 0, 2.5 and 5% of green tea methanolic extract were developed and characterized by FE-SEM, FT-IR, TGA/DSC as well as tensile strength analysis. The FE-SEM images revealed that all of the nanofibers had an average diameter of ∼80nm. The swelling degree was decreased by increasing the GT amount from 2.5 to 5% and this might be attributed to the enhanced interactions of the NH2, C(O)NH2 and OH groups of chitosan and PEO polymers with the OH groups of GT leading to a less hydrophilic mat surface, thus reducing the attraction by the aqueous medium. Moreover, the swelling was the highest in acidic medium but it was decreased in the neutral environment and it had the least value within the alkaline medium. The CS-PEO-5%GT exhibited the highest antibacterial activity among three samples examined against both S. aureus and E. coli microorganisms. The CS-PEO-5%GT was proved to be a very suitable candidate to be used as nerve conduit due to its improved tensile and antibacterial activities.

Keywords

Main Subjects

[1]      Wiberg, M. and Terenghi, G., “Will it be possible to produce peripheral nerves?”, Surg. Technol. Int., 11, 303 (2002).
[2]      Ichihara, S., Inada, Y. and Nakamura, T., “Artificial nerve tubes and their application for repair of peripheral nerve injury: An update of current concepts”, Injury, 39, 29 (2008).
[3]      Huang, Y.‐C. and Huang, Y.‐Y., “Biomaterials and strategies for nerve regeneration”, Artif. Organ., 30 (7), 514 (2006).
[4]      Inoguchi, H., Kwon, I. K., Inoue, E., Takamizawa, K., Maehara, Y. and Matsuda, T., “Mechanical responses of a compliant electrospun poly(L-lactide-co-ε-caprolactone) small-diameter vascular graft”, Biomaterials, 27 (8), 1470 (2006).
[5]      Atala, A. and Lanza, R. P., (eds.), Methods of tissue engineering, Gulf Professional Publishing, (2002).
[6]      Hartgerink, J. D., Beniash, E. and Stupp, S. I., “Self-assembly and mineralization of peptide-amphiphile nanofibers”, Science, 294 (5547), 1684 (2001).
[7]      Gu, B., Badding, J. V. and Sen, A., “A new approach in melt-blown technique for fabrication of polymer nanofibers”, Polym. Preprint., 44 (2), 142 (2003).
[8]      Feng, L., Li, S., Li, H., Zhai, J., Song, Y., Jiang, L. and Zhu, D., “Super‐hydrophobic surface of aligned polyacrylonitrile nanofibers”, Angew. Chem., 114 (7), 1269 (2002).
[9]      Caracciolo, P. C., Tornello, P. C. R., Ballarin, F. M. and Abraham, G. A., “Development of electrospun nanofibers for biomedical applications: state of the art in Latin America”, J. Biomater. Tissue Eng., 3 (1), 39 (2013).
[10]  Williams, G. R., Chatterton, N. P., Nazir, T., Yu, D.-G., Zhu, L.-M. and Branford-White, C. J., “Electrospun nanofibers in drug delivery: Recent developments and perspectives”, Therap. Deliv., 3 (4), 515 (2012).
[11]  Kohsari, I., Shariatinia, Z. and Pourmortazavi, S. M., “Antibacterial electrospun chitosan–polyethylene oxidenano composite mats containing bioactive silver nanoparticles”, Carbohydr. Polym., 140, 287 (2016).
[12]  Kohsari, I., Shariatinia, Z. and Pourmortazavi, S. M., “Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles”, Int. J. Biol. Macromol., 91, 778 (2016).
[13]  Fazli, Y., Shariatinia, Z., Kohsari, I., Azadmehr, A. and Pourmortazavi, S. M., “A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs”, Int. J. Pharmaceut., 513, 636 (2016).
[14]  Shariatinia, Z. and Fazli, M., “Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch”, Food Hydrocolloid., 46, 112 (2015).
[15]  Shariatinia, Z. and Zahraee, Z., “Controlled release of metformin from chitosan–based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems”, J. Colloid Interf. Sci., 501, 60 (2017).
[16]  Kriegel, C., Kit, K. M., McClements, D. J. and Weiss, J., “Electrospinning of chitosan–poly (ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions”, Polymer, 50 (1), 189 (2009).
[17]  Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V. and Jayakumar, R., “Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture”, Carbohydr. Polym., 80 (2), 413 (2010).
[18]  Fazli, Y. and Shariatinia, Z., “Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous mats”, Mater. Sci. Eng. C, 71, 641 (2017).
[19]  Subramanian, A., Vu, D., Larsen, G. F. and Lin, H.-Y., “Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering”, J. Biomater. Sci. Polym. Ed., 16 (7), 861 (2005).
[20]  Dinis, T. M., Elia, R., Vidal, G., Dermigny, Q., Denoeud, C., Kaplan, D. L., Egles, C. and Marin, F., “3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration”, J. Mechan. Behav. Biomed. Mater., 41, 43 (2015).
[21]  Rietveld, A. and Wiseman, S., “Antioxidant effects of tea: Evidence from human clinical trials”, J. Nutr., 133 (10), 3285S (2003).
[22]  Graham, H. N. “Green tea composition, consumption, and polyphenol chemistry”, Prevent. Med., 21 (3), 334 (1992).
[23]  Pedrielli, P., Pedulli, G. F. and Skibsted, L. H., “Antioxidant mechanism of flavonoids: Solvent effect on rate constant for chain-breaking reaction of quercetin and epicatechin in autoxidation of methyl linoleate”, Journal of Agricultural And Food Chemistry, 49 (6), 3034 (2001).
[24]  Lambert, J. D., Sang, S., Hong, J. and Yang, C. S., “Anticancer and anti-inflammatory effects of cysteine metabolites of the green tea polyphenol, (−)-epigallocatechin-3-gallate”, J. Agricult. Food Chem., 58 (18), 10016 (2010).
[25]  Martín-Diana, A. B., Rico, D. and Barry-Ryan, C., “Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce”, Innov. Food Sci. Emerg. Technol., 9 (4), 593 (2008).
[26]  Muroi, H. and Kubo, I., “Combination effects of antibacterial compounds in green tea flavor against streptococcus mutans”, J. Agricult. Food Chem., 41 (7), 1102 (1993).
[27]  Gramza-Michałowska, A., Kobus-Cisowska, J., Kmiecik, D., Korczak, J., Helak, B., Dziedzic, K. and Górecka, D., “Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis)”, Food Chem., 211, 448 (2016).
[28]  Rashidinejad, A., Birch, E. J. and Everett, D. W., “Antioxidant activity and recovery of green tea catechins in full-fat cheese following gastrointestinal simulated digestion”, J. Food Composit. Anal., 48, 13 (2016).
[29]  Gadkari, P. V. and Balaraman, M., “Catechins, sources, extraction and encapsulation: A review”, Food Bioprod. Proc., 93, 122 (2015).
[30]  Han, J., Zhou, Z., Yin, R., Yang, D. and Nie, J., “Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization”, Int. J. Biol. Macromol., 46 (2), 199 (2010).
[31]  Hsu, S.-H., Wang, M.-C. and Lin, J.-J., “Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites”, Applied Clay Science, 56, 53 (2012).
[32]  Li, J., Zivanovic, S., Davidson, P. M. and Kit, K., “Production and characterization of thick, thin and ultra-thin chitosan/PEO films”, Carbohydr. Polym., 83 (2), 375 (2011).
[33]  Hu, J., Zhou, D. and Chen, Y., “Preparation and antioxidant activity of green tea extract enriched in epigallocatechin (EGC) and epigallocatechin gallate (EGCG)”, J. Agricult. Food Chem., 57 (4), 1349 (2009).
[34]  Fournier-Larente, J., Morin, M.-P. and Grenier D., “Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in porphyromonas gingivalis”, Arch. Oral Biol., 65, 35 (2016).
[35]  Braicu, C., Ladomery, M. R., Chedea, V. S., Irimie, A. and Berindan-Neagoe, I., “The relationship between the structure and biological actions of green tea catechins”, Food Chem., 141 (3), 3282 (2013).
[36]  Gupta, R. S., “Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes”, Microbiol. Mol. Biol. Rev., 62 (4), 1435 (1998).
[37]  Kohsari, I., Shariatinia, Z. and Pourmortazavi, S. M., “Antibacterial electrospun chitosan–polyethylene oxidenanocomposite mats containing bioactive silver nanoparticles”, Carbohydr. Polym., 140, 287 (2016).
[38]  Fazli, Y., Shariatinia, Z., Kohsari I., Azadmehr A. and Pourmortazavi S. M., “A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs”, Int. J. Pharmaceut., 513, 636 (2016).
[39]  Fazli, Y. and Shariatinia, Z., “Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous mats”, Mater. Sci. Eng. C, 71, 641 (2017).
[40]  Kohsari, I., Shariatinia, Z. and Pourmortazavi, S. M., “Antibacterial electrospun chitosan-polyethylene oxidenanocomposite mats containing ZIF-8 nanoparticles”, Int. J. Biol. Macromol., 91, 778 (2016).