Microfluidic extraction of tannic acid from Quercus leaves

Document Type: Full article

Authors

1 1 Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 CFD Research Center, Department of Chemical Engineering, Razi University, Kermanshah, Iran

3 Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

4 Department of Chemical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran

Abstract

In this study, extraction of tannic acid using microchannel was investigated. Affective parameters were optimized. Different solvents including buthanol, ethylacetate and n-hexane as organic phase, methanol, propanol, ethanol and water as aqueous phase investigated. Microchannels with different confluence angles and diameters were examined. Microchannels with different confluence angles and diameters were examined. The effects of pH, temperature, and volumetric flow ratio and contact time of the two phases were investigated. The response surface methodology was used to optimize extraction yield of tannin from Quercus leaves in the employed microchannels. Based on this optimization, maximum yield was achieved at pH=2, temperature=33.1℃, volumetric flow ratio =1.2 and contact time of 25.35s. Results show that extraction-using microchannel has many advantages over traditional methods, including shorter time and higher economic efficiency. Moreover, microchannel provides smaller volume of fluids resulting in lower solvent consumption, lower waste production, shorter analytical times, smaller space requirements, and lower energy consumption.

Keywords

Main Subjects


[1]      Masada, S., “Authentication of the botanical origin of western herbal products using Cimicifuga and Vitex products as examples”, J. Nat. Med., 70 (3), 361 (2016).

[2]      Moradi, M. T., Karimi, A. and Alidadi, S. “In vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract of Quercus brantii L. acorn and subsequent fractions”, Chin. J. Nat. Med., 14 (3), 196 (2016).

[3]      Yang, B., Jiang, Y., Shi, J., Chen, F. and Ashraf, M., “Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit: A review”, Food Res. Int., 44 (7), 1837 (2011).

[4]      Manach, C., Morand, A. C., Remesy, C. and Jimenez, L., “Polyphenols: Food sources and bioavailability”, AM. J. Clin. Nutr., 79 (5), 727 (2004).

[5]      Mircea, O. and Escriche, I., “Antioxidants: Characterization, natural sources, extraction and analysis”, Food Res. Int., 74 (1), 10 (2015).

[6]      Masoudinejad, M. R. and Rezazadeh Azaria, M., “Comparison of four methods of tannin extraction from the results of oak species in Iran”, Hakim,6 (1), 81 (2003).

[7]      Khennouf, S., Amira, S., Lekhmici, A. and Baghiani, A., “Effect of some phenolic compounds and Quercus tannins on lipid”, World Appl. Sciences J., 8 (9),1144 (2010).

[8]      Syukriah, N., Liza, A. R., Harisun, M. S. and Fadzillah, A. M., “Effect of solvent extraction on antioxidant and antibacterial activities from Quercus infectoria (Manjakani)”, Food Res. Int. J., 21 (3), 7 (2014).

[9]      Chung, K., Stevens, S., Lin, W. and Wei, C., “Growth inhibition of selected food born bacteria by tannic acid, propylgallate and related compounds”, Lett. Appl.  Microbiol., 17 (1), 29 (1993).

[10]  Huang, W. N. and Borthwick, A. G., “Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6”, Process Biochem., 40 (3), 1245 (2005).

[11]  Akiyama, H., Fujii, K., Yamasaki, O. and Oono, T., “Antibacterial action of several tannins against Staphylococcus aureus”, J. Antimicrob. Chemoth., 48 (1), 487 (2001).

[12]  Cowan, M., “Plant products as antimicrobial agents”, Clin.  Microbiol. Rev., 12 (4), 564 (1999).

[13]  Łozowicka, B., Jankowska, M., Rutkowska, E., Hrynko, I., Kaczynski, P. and Micinski,J., “The evaluation of a fast and simple pesticide multiresidue method in various herbs by gas chromatography”, J. Nat. Med., 68 (1), 95 (2014).

[14]  Wen, H., Ting, G., Wen-Jun, J., Guang-Li, D., Da-Wei, C. H., Shi, Y. and He-Ran, L., “Effects of ultrahigh pressure extraction on yield and antioxidant activity of chlorogenic acid and cynaroside extracted from  flower buds of Lonicera japonica”, Chin. J. Nat. Med., 13 (6), 445 (2015).

[15]   Rathkamp, P. J.,  Bravo, J. L. and  Fair, J. R., “Evaluation of packed columns in supercritical extraction processes”, Solvent  Extr. Ion Exch., 5 (3), 367 (2007).

[16]  Plaza, M., Amigo-Benavent,  M., Castillo, M. D., Ibanez,  E. and Herrero, M., “Facts about the formation of new antioxidants in natural samples after subcritical water extraction”, Food Res. Int., 43 (10), 2341 (2010).

[17]  Tongai, M., Ying, Y. U., Zhi-Qin, C. U. and Ying, Z. “Optimization, and orthogonal design of an ultrasonic-assisted aqueous extraction process for extracting chlorogenic acid from dry tobacco leaves”, Chin. J. Nat. Med.,12 (4), 60064 (2012).

[18]  Pansera, M. R., Antoniolob, G., Atti-santos, A. C. and Rossato, M., “Extraction of tannin by Acacia mearnsii with supercritical fluids”, Braz. Arch. Biol. Techn.47 (6), 995 (2004).

[19]  Frederico, S., Leonardo, L., José, R. and Edemilson, C., “Impact of different extraction methods on the quality of Dipteryx alata extracts”, Revista Braz. de Farmaco., 23 (3), 521 (2013).

[20]  Lin, H., Hai-de, Z., Shi-shu, L. and Kai, L., “Optimization of ultrasound-assisted extraction of total phenol from betel (Areca catechu L.) Nut seed and evaluation of antioxidant activity in vitro”,  Afr. J. Biotechnol.,10 (46), 9289 (2011).

[21]  Tabaraki, R. and Rastgoo, Sh., “Comparison between conventional and ultrasound-assisted extractions of natural antioxidants from walnut green husk”, Korean J. Chem. Eng., 31 (4), 676 (2014).

[22]  Popov, V., Andreeva, I. N. and Gavrilin, M. V., “HPLC detemination of Tannins in raw materals and preparations of garden burnet”, Pharm. Chem.  J.,  37 (7), 24 (2003).

[23]  Fair, J. R. and  Humphrey,  J. L., “Liquid-liquid extraction: Possible alternative to distillation”, Solvent  Extr. Ion Exch.,  2(3), 323 (1989).

[24]  Dong, L. and Suresh, V., “Investigation of liquid flow in microchannels”, J. Thermophys. Heat TR.18 (1), 65 (2004).

[25]  Choe, J., Kwon, Y., Kim, Y., Song, H. S. and Song, K. H., “Micromixer as a continuous flow reactor for the synthesis of a pharmaceutical intermediate”,  Korean J. Chem. Eng., 20 (2), 268 (2003).

[26]  Rahimi, M., Akbari, M., Parsamoghadam, M. A. and Abdulaziz, A., “CFD study on  effect of channel  confluence angle on fluid flow pattern in asymmetrical shaped microchannels”, Comput. Chem. Eng.,73 (1), 172 (2015).

[27]  Nisisako, T. and Torii, T., “Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles”, Lab Chip.,  8 (2), 287 (2008).

[28]  Dittrich, P. S. and Manz, A., “Lab-on-a-chip: Microfluidics in drug discovery”,  Nat. Rev. Drug Discov.5 (3), 210 (2006).

[29]  Yi, C., Li, C. W., Ji, S. and Yang, M., “Microfluidics technology for manipulation and analysis of biological cells”, Anal. Chim. Acta., 560 (1), 1 (2006).

[30]  Huh, Y. S.,  Jeon, S. J.,  Lee, E. Z., Park, H. S. and Hong, W. H., “Microfluidic extraction using two phase laminar flow for chemical and biological applications”, Korean J. Chem. Eng., 28 (3), 533 (2011).

[31]  Zhaoa,  F.,  Lua, Y., Wanga, K. and  Luoa, G.,  “Back extraction of HCl from TOA dissolved in N-octanol by aqueous ammonia in a microchannel device”,  Solvent  Extr. Ion Exch., 34 (1), 60 (2016).

[32]  Sen, N.,  Darekar, M., Singh,  K. K.,  Mukhopadhyay,  S.,  Shenoy , K. T. and  Ghosh, S. K., “Solvent extraction and stripping studies in microchannels with TBP nitric acid system”, Solvent  Extr. Ion Exch., 32 (3), 281 (2014).

[33]  Kothare,  M. V., “Dynamics and control of integrated  microchemical systems with application to micro-scale fuel processing”, Comput. Chem. Eng.,30 (1), 1725 (2006).

[34]  Nalein, N., Rahimi, M. and Heydari, R.,  “Oleuropein  extraction using microfluidic system”, Chem. Eng. Process., 92 (1), 1 (2015).

[35]  Aoki, A., Fukuda, T., Maeda, N. and Mae, K., “Design of confluence and bend geometry for rapid mixing in microchannels”, Chem. Eng. J.227 (1), 198 (2013).

[36]  Rahimi, M., Valeh-e-Sheyda, P., Parsamoghadam, M. A., Azimi, N. and Adibi, H., “LASP and Villermaux / Dushman protocols for mixing performance in microchannels: Effect of geometry on micromixing characterization and size reduction”, Chem. Eng. Process., 85 (1), 178 (2014).

[37]  Design- Expert- Software, www.statease.com, Trial version, Last visit: 24 November 2015.