Document Type : Research note

Author

Central Research Laboratory, Esfarayen University of Technology, Esfarayen, North Khorasan, Iran

Abstract

The effect of temperature (25, 40, 55 and 70°C) and weight fraction of MWCNTs (0.125, 0.25 and 0.5 %wt) on the viscosity of nanofluids containing pristine and functionalized MWCNTs have been investigated. For this purpose, all of the measurements were carried out in triplicate and were analyzed using two factors completely randomized design and comparison of data means is carried out with Duncan’s multiple range test. The level of statistical significance was determined at 95%. The experimental and statistical results show that the viscosity of the both nanofluids increases with respect to the weight fraction and by decreasing the temperature. Statistical analysis of viscosity shows that temperature, weight fraction and interaction effect of them have a significant influence on the viscosity of nanofluids containing pristine and functionalized MWCNTs (α=0.05). Meanwhile, the results show that there was a significant difference at different levels of temperature on the viscosity of the both nanofluid.

Keywords

Main Subjects

[1]      Abbasi, S., Zebarjad, S. M., Baghban, S. H. N., Youssefi, A. and Ekrami-Kakhki, M. -S., “Thermal conductivity of water based nanofluids containing decorated multi walled carbon nanotubes with different amount of TiO2 nanoparticles”, IJChE, 12 (1), 30 (2015).
[2]      Garg, P., Alvarado, J. L., Marsh, C., Carlson, T. A., Kessler, D. A. and Annamalai, K., “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids”, Int. J. Heat Mass Transfer, 52, 5090 (2009).
[3]      Abbasi, S., Zebarjad, S. M., Baghban, S. H. N. and Youssefi, A., “Statistical analysis of thermal conductivity of nanofluid containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles”, Bull. Mater. Sci., 37 (6), 1439 (2014).
[4]      Abbasi, S., Zebarjad, S. M., Baghban, S. H. N., Youssefi, A. and Ekrami-Kakhki, M. -S., “Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes with TiO2 nanoparticles/water nanofluids”, J. Therm. Anal. Calorim., 123, 81 (2016).
[5]      Aladag, B., Halelfadl, S., Doner, N., Maré, T., Duret, S. and Estellé, P., “Experimental investigations of the viscosity of nanofluids at low temperatures”, Appl. Eng., 97, 876 (2012).
[6]      Hojjat, M., Etemad, S. G., Bagheri, R. and Thibault, J., “Rheological characteristics of non-Newtonian nanofluids: Experimental investigation”, Int. J. Heat Mass Transf., 38, 144 (2011).
[7]      Bobbo, S., Fedele, L., Benetti, A., Colla, L., Fabrizio, M., Pagura, C. and Barison, S., “Viscosity of water based SWCNH and TiO2 nanofluids”, Exp. Therm. Fluid Sci., 36, 65 (2012).
[8]      Meng, Z., Wua, D., Wanga, L., Zhua, H. and Li, Q., “Carbon nanotube glycol nanofluids: Photo-thermal properties, thermal conductivities and rheological behavior”, Particuology, 10, 614 (2012).
[9]      Lu, K., “Rheological behavior of carbon nanotube-alumina nanoparticle dispersion systems”, Powder Technol., 177 (3), 154 (2007).
[10]  Amiri, A., Shanbedi, M., Eshghi, H., Heris, S. Z. and Baniadam, M., “Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties”, J. Phys. Chem. C, 116, 3369 (2012).
[11]  Abbasi, S., Zebarjad, S. M. and Baghban, S. H. N., “Decorating and filling of multi-walled carbon nanotubes with TiO2 nanoparticles via wet chemical method”, Eng., 5, 207 (2013).
[12]  Abbasi, S., Zebarjad, S. M., Baghban, S. H. N. and Youssefi, A., “Comparison between experimental and theoretical thermal conductivity of nanofluids containing MWCNTs decorated with TiO2 nanoparticles”, Exp. Heat. Transfer, 29, 781 (2016).
[13]  Abbasi, S., Zebarjad, S. M., Baghban, S. H. N. and Youssefi, A., “Synthesis of TiO2 nanoparticles and decorated multi-walled carbon nanotubes with various content of rutile titania”, Synth. React. Inorg. Met. Org. Chem., 45, 1539 (2015).
[14]  Fedele, L., Colla, L. and Bobbo, S., “Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles”, Int. J. Refrig., 35, 359 (2012).
[15]  Goharshadi, E. K., Ahmadzadeh, H., Samiee, S. and Hadadian, M., “Nanofluids for heat transfer enhancement: A review”, Phys. Chem. Res., 1 (1), 1 (2013).
[16]  Kazemi-Beydokhti, A., Namaghi, H. A., Asgarkhani, M. A. H. and Heris, S. Z., “Prediction of stability and thermal conductivity of SnO2 nanofluid via statistical method and an artificial neural network”, Braz. J. Chem. Eng., 32 (4), 903 (2015).
[17]  Murshed, S. M. S., Leong, K. C. and Yang, C., “Thermophysical and electrokinetic properties of nanofluids: A critical review”, Appl. Therm. Eng., 28 (17), 2109 (2008).