Study on diffusion coefficient of benzene and ethyl benzene vapours in nanoporous silica aerogel and silica aerogel-activated carbon composites

Document Type: Full article


Transport Phenomena Research Center, Faculty of Chemical Engineering, Sahand University of Technology, P. O. Box: 51335-1996, Tabriz, Iran


In this study, nanoporous silica aerogel and silica aerogel-activated carbon composites have been synthesized using a water glass precursor by cost effective ambient pressure drying method. Equilibrium and kinetics of benzene and ethyl benzene adsorption on silica aerogel and its composites have been measured in a batch mode at tree weights of adsorbent. For the first time, the experimental data have been fitted with intra-particle diffusion model for determining of diffusion coefficients. The saturation adsorption capacity of benzene and ethyl benzene vapours was 2033 mg.g-1 and 458 mg.g-1 respectively. The components uptake curves have been described by mathematical models of pseudo first order and pseudo second order models. It has been found that the pseudo first order model fits the experimental data better than the pseudo second order model. Also, the pseudo-second order model could be used for modeling of benzene adsorption over silica aerogel and silica aerogel-2% wt. activated carbon composite at the beginning of adsorption process. The diffusion coefficients of benzene and ethyl benzene within the silica aerogel were in the range of 〖2.16×10〗^(-14) - 〖6.66×10〗^(-13) m2.s-1 and 〖3.65×10〗^(-13) - 〖1.95×10〗^(-12) m2.s-1, respectively.


Main Subjects

[1]      Campesi, M. A., Luzi, C. D., Barreto, G. F. and Martínez, O. M., “Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration”, J. Environ. Manage., 154, 216 (2015).

[2]      Hosseini, M., Barakat, T., Cousin, R., Aboukaïs, A., Su, B. and De, W. G., “Catalytic performance of core–shell and alloy Pd–Au nanoparticles for total oxidation of VOC: The effect of metal deposition”, Appl. Catal., 111–112, 218 (2012).

[3]      Hsu, S. H., Huang, C. S., Chung, T. W. and Gao, S., “Adsorption of chlorinated volatile organic compounds using activated carbon made from Jatropha curcas seeds”, J. Taiwan Inst. Chem. Eng., 45, 2526 (2014).

[4]      Tamaddoni, M., Sotudeh-Gharebagh, R., Nario, S., Hajihosseinzadeh, M. and Mostoufi, N., “Experimental study of the VOC emitted from crude oil tankers”, Process Saf. Environ. Prot., 92, 929 (2014).

[5]      Vinodh, R., Jung, E. M., Ganesh, M., Peng, M. M., Abidov, A., Palanichamy, M., Cha, W. S. and Jang, H. T., “Novel microporous hypercross-linked polymers as sorbent for volatile organic compounds and CO2 adsorption”, J. Ind. Eng., 21, 1231 (2015).

[6]      Dou, B., Li, J., Wang, Y., Wang, H., Ma, C. and Hao, Z., “Adsorption and desorption performance of benzene over hierarchically structured carbon–silica aerogel composites”, J. Hazard. Mater., 196, 194 (2011).

[7]      William, J. C. and Lead, P. E., VOC control strategies in plant design, in Chemical processing: Project engineering annual, p. 44 (1997).

[8]      Zhao, Z., Li, X. and Li, Z., “Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101”, Chem. Eng. J., 173, 150 (2011).

[9]      Zaitan, H., Bianchi, D., Achak, O. and Chafik, T., “A comparative study of the adsorption and desorption of o-xylene onto bentonite clay and alumina”, J. Hazard. Mater., 153, 852 (2008).

[10]  Anfruns, A., Martin, M. and Montes-Morán, M. A., “Removal of odourous VOCs using sludge-based adsorbents”, Chem. Eng. J., 166, 1022 (2011).

[11]  Blanco, F., Vilanova, X., Fierro, V., Celzard, A., Ivanov, P., Llobet, E., Canellas, N., Ramırez, J. L. and Correig, X., “Fabrication and characterisation of microporous activated carbon-based pre-concentrators for benzene vapours”, Sens Actuators, 132 (B), 90 (2008).

[12]  Hung, C., Bai, H. and Karthik, M., “Ordered mesoporous silica particles and Si MCM-41 for the adsorption of acetone: A comparative study”, Sep. Purif. Technol., 64, 265 (2009).

[13]  Romero-Anaya, A. J., Romero-Anaya, M. A. and Linares-Solano, A., “Factors governing the adsorption of ethanol on spherical activated carbons”, Carbon, 83, 240 (2015).

[14]  Horikawa, T., Sakao, N. and Do, D. D., “Effects of temperature on water adsorption on controlled microporous and mesoporous carbonaceous solids”, Carbon, 56, 183 (2013).

[15]  Kim, K. D., Park, E. J., Seo, H. O., Jeong, M. G., Kim, Y. D. and Lim, D. C., “Effect of thin hydrophobic films for toluene adsorption and desorption behaviour on activated carbon fiber under dry and humid conditions”, Chem. Eng. J., 200, 133 (2012).

[16]  Bandura, L., Franus, M., Józefaciuk, G. and Franus, W., “Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup”, Fuel, 147, 100 (2015).

[17]  Qu, F., Zhu, L. and Yang, K., “Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH)”, J. Hazard. Mater., 170, 7 (2009).

[18]  Dıaz, E., Ordonez, S., Vega, A. and Coca, J., “Adsorption characterisation of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography”, J. Chromatogr. A, 1049, 139 (2004).

[19]  Dou, B., Hu, Q., Li, J., Qiao, S. and Hao, Z., “Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry”, J. Hazard. Mater., 186, 1615 (2011).

[20]  Duerinck, T., Leflaive, P., Arik, I. C., Pirngruber, G., Meynen, V., Cool, P., Martens, J. A., Baron, G. V., Faraj, A. and Denayer, J. F. M., “Experimental and statistical modeling study of low coverage gas adsorption of light alkanes on meso-microporous silica”, Chem. Eng. J., 179, 52 (2012).

[21]  Russo, P. A., Ribeiro, M. M. L. and Carrott, P. J. M., “Trends in the condensation/evaporation and adsorption enthalpies of volatile organic compounds on mesoporous silica materials”, Microporous Mesoporous Mater., 51, 223 (2012).

[22]  Gallego, E., Roca, F. J., Perales, J. F. and Guardino, X., “Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement”, Buil. Env., 67, 14 (2013).

[23]  Sarawade, P. B., Kim, J. K., Hilonga, A., Quang, D. V., Jeon, S. J. and Kim, H. T., “Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties: Effect of heat-treatment”, J. Non-Cryst. Solids, 357, 2156 (2012).

[24]  Omranpour, H. and Motahari, S., “Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature”, J. Non-Cryst. Solids, 379, 7 (2013).

[25]  Sarawade, P. B., Kim, J. K., Hilonga, A. and Kim, H. T., “Production of low-density sodium silicate-base d hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process”, Solid State Sci., 12, 911 (2010).

[26]  Yang, H., Ye, F., Liu, Q., Liu, S., Gao, Y. and Liu, L., “A novel silica aerogel/porous Si3N4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent”, Mater. Lett., 138, 135 (2015).

[27]  Attia, S. M., Sharshar, T., Abd-Elwahed, A. R. and Tawfik, A., “Study of transport properties and conduction mechanism of pure and composite resorcinol formaldehyde aerogel doped with Co-ferrite”, Mater. Sci. Eng., 178, 897 (2013).

[28]  Alnaief, M. and Smirnova, I., “Effect of surface functionalization of silica aerogel on their adsorptive and release properties”, J. Non-Cryst. Solids, 365, 1644 (2010).

[29]  Meynen, V., Cool, P. and Vansant, E. F., “Synthesis of siliceous materials with micro- and mesoporosity”, Microporous Mesoporous Mater., 104, 26 (2007).

[30]  He, Y. L. and Xie, T., “Advances of thermal conductivity models of nanoscale silica aerogel insulation material”, Appl. Therm. Eng., 81, 28 (2015).

[31]  Hou, C. H., Huang, S. C., Chou, P. H. and Den, W., “Removal of bisphenol A from aqueous solutions by electrochemical polymerization on a carbon aerogel electrode”, J. Taiwan Inst. Chem. Eng., 51, 103 (2015).

[32]  Liu, H., Sha, W., Cooper, A. T. and Fan, M., “Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds”, Colloids Surf., A: Physicochem. Eng. Aspects, 347, 38 (2009).

[33]  Domınguez, M., Taboada, E., Molins, E. and Llorca, J., “Co–SiO2 aerogel-coated catalytic walls for the generation of hydrogen”, Catal. Today, 138, 193 (2008).

[34]  Sabri, F., Marchetta, J. and Smith, K. M., “Thermal conductivity studies of a polyurea cross- linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space”, Acta. Astronautica, 91, 173 (2013).

[35]  Burchell, M. J., Fairey, S. A. J., Foster, N. J. and Cole, M. J., “Hypervelocity capture of particles in aerogel: Dependence on aerogel properties”, Planetary and Space Sci., 57, 58 (2009).

[36]  Wang, C. T. and Wu, C. L., “Electrical sensing properties of silica aerogel thin films to humidity”, Thin Solid Films, 496, 658 (2006).

[37]  Wang, C. T., Wu, C. L., Chen, I. C. and Huang, Y. H., “Humidity sensors based on silica nanoparticle aerogel thin films”, Sens. Actuators B: Chemical, 107, 402 (2005).

[38]  Jin, Y., Wu, M., Zhao, G. and Li, M., “Photocatalysis-enhanced electrosorption process for degradation of high-concentration dye wastewater on TiO2 /carbon aerogel”, Chem. Eng. J., 168, 1248 (2011).

[39]  Lin, Y. F. and Chen, J. L., “Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency”, J. Colloid Interface Sci., 420, 74 (2014).

[40]  Mohammadi, A. and Moghaddas, J. S., “Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites”, Chem. Eng. Res. Des., 94, 475 (2015).

[41]  Standeker, S., Novak, Z. and Knez, Z., “Removal of BTEX vapours from waste gas stream using silica aerogels of different hydrophobicity”, J. Hazard. Mater., 165, 1114 (2009).

[42]  Rao, A. V., Bhagat, S. D., Hirashima, H. and Pajonk, G. M., “Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor”, J. Colloid Interface Sci., 300, 279 (2006).

[43]  Qiu, H., LV, L., Pan, B., Zhang, Q. J., Zhang, W. and Zhang, Q. X., “Critical review in adsorption kinetic models”, J. Zhejiang University Science, 10 (5), 716 (2015).

[44]  Loganathan, S., Tikmani, M., Edubilli, S., Mishra, A. and Ghoshal, A. K., “CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature”, Chem. Eng. J., 256, 1 (2014).

[45]  Chauveau, R., Grévillot, G., Marsteau, S. and Vallières, C., “Values of the mass transfer coefficient of the linear driving force model for VOC adsorption on activated carbons”, Chem. Eng. Res. Des., 91, 955 (2013).

[46]  Xu, J. and Zhang, J. S., “An experimental study of relative humidity effect on VOCs’ effective diffusion coefficient and partition coefficient in a porous medium”, Buil. Env., 46, 1785 (2011).

[47]  Crittenden, B. and Thomas, W. J., Adsorption technology and design, 1st ed., Linacre House, Jordan Hill, Oxford, p. 86 (1998).

[48]  Peia, J. and Zhang, J. S., “Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations”, Buil. Env., 48, 66 (2012).

[49]  Cao, Y., Zhao, Y., Lv, Z., Song, F. and Zhong, Q., “Preparation and enhanced CO2 adsorption capacity of UiO-66/grapheme oxide composites”, J. Ind. Eng. Chem., 27, 102 (2015).

[50]  Munusamy, K., Sethia, G., Patil, D. V., Rallapalli, P. B. S., Somani, R. S. and Bajaj, H. C., “Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): Volumetric measurements and dynamic adsorption studies”, Chem. Eng. J., 195-196, 359 (2012).

[51]  Gil, M. V., Álvarez-Gutiérrez, N., Martínez, M., Rubiera, F., Pevida, C. and Morán, A., “Carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams: Breakthrough adsorption study”, Chem. Eng. J., 269, 148 (2015).

[52]  Soto, M. L., Moure, A., Domínguez, H. and Parajó, J. C., “Recovery, concentration and purification of phenolic compounds by adsorption: A review”, J. Food Eng., 105, 1 (2011).

[53]  Rao, A. P., Rao, A. V. and Pajonk, G. M., “Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents”, Appl. Surf. Sci., 253, 6032 (2007).

[54]  Shi, F., Wang, L. and Liu, J., “Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process”, Mat. Lett., 60, 3718 (2006).

[55]  Lakea, C. B. and Rowe, R. K., “A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites”, Geotext. Geomembr., 23, 323 (2005).

[56]  Li, F. and Niu, J., “Simultaneous estimation of VOCs diffusion and partition coefficients in building materials via inverse analysis”, Buil. Env., 40, 1366 (2005).

[57]  Luoa, R. and Niu, J. L., “Determining diffusion and partition coefficients of VOCs in cement using one FLEC”, Buil. Env., 41, 1148 (2006).