Environmental Engineering,
Amirhossein Oudi; Reza Golhosseini
Abstract
Optimization of the homogeneous rhodium-catalyzed methanol carbonylation reactor to reduce CO2 emissions is studied in this line of research. In this paper, the steady-state homogeneous rhodium-catalyzed methanol carbonylation reactor is simulated using Aspen HysysV.9 software, by comparing the simulation ...
Read More
Optimization of the homogeneous rhodium-catalyzed methanol carbonylation reactor to reduce CO2 emissions is studied in this line of research. In this paper, the steady-state homogeneous rhodium-catalyzed methanol carbonylation reactor is simulated using Aspen HysysV.9 software, by comparing the simulation results with industrial information, a mean relative error (excluding methanol) of 4.8% was obtained, which indicates the high accuracy of the simulation. The central composite design (CCD) and genetic algorithm (GA) with the aid of a simplified process simulation were used to estimate the effect of individual variables (liquid level, the temperature of the catalyst-rich recycle stream, the mole ratio of CO to methanol (MeOH) in the feed, and flow rate of dilute acid stream) and their mutual interactions to reduce CO2 emissions. It is obtained that the liquid level percentage of 46%, the catalyst-rich recycle stream temperature of 120 °C, CO: MeOH molar ratio equal to 1.13:1, and the dilute acid flow rate of 513.14 kmol/hr lead to CO2 reduction by 34%.
Environmental Engineering,
alireza bahramian
Abstract
The size and lifetime of evaporating sneeze droplets in the indoor environment were studied experimentally and theoretically. The effect of indoor temperature T∞ and indoor humidity RH∞ were investigated on evaporating droplets with initial diameters of 4.9, 8.1, 17.2, and 29.7 μm. The ...
Read More
The size and lifetime of evaporating sneeze droplets in the indoor environment were studied experimentally and theoretically. The effect of indoor temperature T∞ and indoor humidity RH∞ were investigated on evaporating droplets with initial diameters of 4.9, 8.1, 17.2, and 29.7 μm. The size distribution and mean size of droplets were obtained by laser particle sizer. The experimental data showed that the possibility of aerosolized droplets increased from 25.5 to 36.1% by increasing T∞ from 18 to 30 oC and decreased from 36.1 to 13.6% by increasing RH∞ from 30 to 60%. A one-dimensional droplet evaporation model was used to estimate the droplet’s lifetime. A critical RH∞ of 40% was found; above them, the droplet lifetime exponentially increases. The effect of the initial diameter of droplets was higher than RH∞ and also the impact of RH∞ was higher than T∞ on the lifetime of aerosolized droplet nuclei. A significant effect of environmental conditions on the droplet lifetime was found over the range of 26 ○C ≤T∞ ≤30 ○C and RH∞ ≤ 40%, while its effect decreases in the range of 18 ○C ≤T∞ ≤22 ○C and RH∞ > 40%, where a minimal shrinkage of droplets take place because of the droplets hygroscopic growth. The results of this study do not imply that the COVID-19 virus will be deactivated at the end of the droplet lifetime, but it represents that controlling the indoor environment is important for virus-carrying drops.
Environmental Engineering,
Zohreh khoshraftar; Ahad Ghaemi; Hossein Mashhadimoslem
Abstract
In this research, silica gel as a low-cost adsorbent for the uptake of carbon dioxide was investigated experimentally. The samples were characterized by XRD, BET and FT-IR. It shows that as pressure was increased from 2 to 8 bar, the CO2 adsorption capability improved over time. At a pressure of 6 bar ...
Read More
In this research, silica gel as a low-cost adsorbent for the uptake of carbon dioxide was investigated experimentally. The samples were characterized by XRD, BET and FT-IR. It shows that as pressure was increased from 2 to 8 bar, the CO2 adsorption capability improved over time. At a pressure of 6 bar and a dose of 1 g of silica gel, the impact of temperature (25, 45, 65, and 85 °C) on the CO2 adsorption capacity (mg/g) was determined. The process behavior was investigated using isotherm, kinetics and thermodynamic models. As the temperature rises at a constant pressure, the adsorption capacity decreases. The experimental data of the carbon dioxide adsorption using silica gel have a high correlation coefficient with both Langmuir (0.998) and Freundlich (0.999) models. The results of the carbon dioxide adsorption kinetics with the silica gel adsorbent show that the correlation coefficient (R2) of the second-order model and Ritchie's second model are equal to 0.995 and have the highest value. The total pore volume was 0.005119 (cm3 g-1) and the specific surface area was 2.1723 (m2g−1). The maximum CO2 adsorption capacity at 25 °C near 8 bar was 195.8 mg/g.
Environmental Engineering,
Adel Panahadeh; Arsalan Parvareh; Mostafa Moraveji
Abstract
The central composite design (CCD) was employed to investigate the adsorption of Pb(II) and Zn(II) metal ions as well as methylene blue (MB) as an aromatic anion by a new EDTA/MnO2/CS/Fe3O4 synthesized nanocomposite. The effect of possible affective factors including the contaminant concentration (20-200 ...
Read More
The central composite design (CCD) was employed to investigate the adsorption of Pb(II) and Zn(II) metal ions as well as methylene blue (MB) as an aromatic anion by a new EDTA/MnO2/CS/Fe3O4 synthesized nanocomposite. The effect of possible affective factors including the contaminant concentration (20-200 mg/L), pH (2-8), adsorbent content (0.1-0.9 g/L), and contact time (10-110 min) on the adsorption of the metal ions using response surface methodology (RSM) were studied. The highest removal percentages predicted by the model were 100.776 % and 87.069 %, respectively, for the removal of Pb(II) and Zn(II), that the value of more than 100 % in the case of Pb(II) was due to the model’s error. The effect of the simultaneous presence of methyl blue (MB) and the metal ions in the aqueous solution on the adsorption rate of each metal ion was investigated. The study of the adsorption isotherms in the single-component adsorption showed the dominance of Langmuir isotherm over the adsorption process of each pollutant (R2 > 0.99). The maximum adsorption capacities according to the Langmuir model were 310.4 and 136 mg/g for lead and zinc ions, respectively, and 421.1 mg/g for methyl blue. The results showed that the studied nanocomposite still had high efficiency after five consecutive adsorption-desorption cycles
Environmental Engineering,
Behnam mousazadeh; Nima . mohammadi; Touba hamoule
Abstract
Ziziphus nuts are abundant in Khuzestan province, Iran, and are considered as an unwanted natural biomass waste. The present study is aimed to develop low-cost activated carbon from Ziziphus nuts as a new precursor for the removal of phosphate from the water environment.the iron oxide modification was ...
Read More
Ziziphus nuts are abundant in Khuzestan province, Iran, and are considered as an unwanted natural biomass waste. The present study is aimed to develop low-cost activated carbon from Ziziphus nuts as a new precursor for the removal of phosphate from the water environment.the iron oxide modification was performed to simultaneously facilitate the adsorbent separation via a simple magnetic process and increase the phosphate removal capacity. The iron oxide/activated carbon composite (IOAC) was characterized using XRD, EDX, SEM, and BET methods. The specific surface area for IOAC reached 569.41 m2/g, comparable to that of the commercial activated carbon. While other similar derived-from-biomasses activated carbon reached the phosphate removal capacity of around 15 mg/g, IOAC demonstrated the excellent phosphate removal performance of as high as 27 mg/g. Also, IOAC showed fast adsorption kinetics, achieving equilibrium in only 60 minutes. According to the results, the pseudo-second-order kinetic model was more consistent with the data related to the phosphate adsorption onto the adsorbent than the pseudo-first-order model. The adsorption results using Langmuir, Freundlich, and Webber-Morris diffusion models were interpreting. The maximum Langmuir adsorption capacity was calculated to be 27 mg/L. The adsorbent was removed from the aqueous solution via a simple magnetic process.
Environmental Engineering,
A. Kazemi-Beydokhti; H. Hassanpour souderjani
Abstract
Due to the dangerous effects of sulfur in hydrocarbon compounds and its impact on environmental health, a new formulation based on surface-modified carbon nanotubes and a cobalt oxide has been prepared. Oxidative desulfurization is the main section of this process that is utilized to reduce this impurity. ...
Read More
Due to the dangerous effects of sulfur in hydrocarbon compounds and its impact on environmental health, a new formulation based on surface-modified carbon nanotubes and a cobalt oxide has been prepared. Oxidative desulfurization is the main section of this process that is utilized to reduce this impurity. After decorating cobalt oxide on the surface of nanotubes, the TEM images and Thermogravimetric analysis were studied to evaluate the structure of this complex. The results show that the combination of metal oxide and functionalized nanoparticles presents better efficiency in sulfur removal. In addition, the reaction rate raised by increasing the number of functional groups on the surface of nanotubes. Then, the influence of temperature, reaction time and the concentration of the oxidizing agent in the sample was investigated. The results show that the higher temperature and higher number of oxidizing agents could provide better efficiency in the desulfurization process. Due to the presence of CNTs in the synthesized catalyst, it is possible that sulfur compounds adsorbed with CNT. By matching the data with the Pseudo first and second order adsorption kinetic, it was found that the adsorption is done as a Pseudo first order adsorption kinetic. Since the ODS process is performed by a chemical reaction, the reaction kinetics were adapted to the first order equation and calculate the activation energy required for the reaction. This result can be utilized for better desulfurization of hydrocarbon fuels for different applications.
Environmental Engineering,
A. Hemmati; M. Raeisi; M. borghei
Abstract
Many communities in the world use groundwater as a source of potable water. The high nitrate concentration is a serious problem in groundwater usage. This study utilizes a biological denitrification method to investigate a moving bed biofilm reactor (MBBR) for the case of Tehran's groundwater. One pilot-scale ...
Read More
Many communities in the world use groundwater as a source of potable water. The high nitrate concentration is a serious problem in groundwater usage. This study utilizes a biological denitrification method to investigate a moving bed biofilm reactor (MBBR) for the case of Tehran's groundwater. One pilot-scale MBBR with a 3 liter volume was designed and used in this research. The denitrification reactor operates under anoxic conditions. Methanol was used as a carbon source in the reactor throughout the study, and fifty percent of the reactor volume was occupied with KMT packing (k1). To determine the optimum nitrate loading rate, the concentration of nitrate changed from 100 to 400 mg N/l. It was concluded that heterotrophic denitrifying bacteria converted nitrate to nitrogen. According to obtained results, the removal efficiency and optimum loading rate were estimated during the experiments in different concentrations and different HRTs for this type of reactor. Sodium nitrate was in the feed source in the anoxic reactor. The maximum removal rate of nitrate was measured to be 2.8 g of NO3-N m-2 carrier d-1. Therefore, it was shown that the optimum loading rate of nitrate and the optimum COD/N were equal to 3.2 g of NO3-N m-2 carrier d-1 and 6 g of COD/g N respectively.
Environmental Engineering,
V. Mortezaeikia; R. Yegani; M.A. Hejazi; S. Chegini
Volume 13, Issue 1 , January 2016, , Pages 47-59
Abstract
In this work, performance of hollow fiber membrane photobioreactor (HFMPB) on the growth of Dunaliella Salina (G26) at various aeration rates (0.1 and 0.2 VVm) and medium re-circulation flow rates (500 and 1000 mL/h) were studied. Cultivation was carried out at both batch and semi-continuous modes in ...
Read More
In this work, performance of hollow fiber membrane photobioreactor (HFMPB) on the growth of Dunaliella Salina (G26) at various aeration rates (0.1 and 0.2 VVm) and medium re-circulation flow rates (500 and 1000 mL/h) were studied. Cultivation was carried out at both batch and semi-continuous modes in HFMPBs containing neat and hydrophilized in-house fabricated poly ethylene (PE) membranes at fixed light intensity of 300 µmol m-2 s-1and temperature of 30 oC. Microalgae showed better growth in hydrophobic module in both cultivation modes and modules. Maximum biomass concentration, CO2 biofixation and specific growth rates equal with 0.71g L-1, 1.102g L-1 d-1 and 0.224d-1 were obtained for non-wetted membranes, respectively. Comparing the performance of both modules showed that the impact of cultivation mode on the CO2 biofixation rate and CO2 removal is more pronounced than the impact of mass transfer resistance in membrane contactors. The obtained results show that the mean CO2 biofixation rates in semi-continuous cultivation for both neat and hydrophilized modules are higher than that in batch cultivation in all operating conditions. It was also found that the hydrophobic membranes are much preferable than hydrophilic membrane in HFMPBs.
Environmental Engineering,
Volume 5, Issue 3 , July 2008, , Pages 62-67
Abstract
Airborne particulate matter (PM10 ) was collected from the atmosphere of the city of Isfahan. The concentration of heavy metals and anions associated with airborne particulate matter were determined using atomic absorption spectrometric and ion chromatographic techniques. A comparison was made between ...
Read More
Airborne particulate matter (PM10 ) was collected from the atmosphere of the city of Isfahan. The concentration of heavy metals and anions associated with airborne particulate matter were determined using atomic absorption spectrometric and ion chromatographic techniques. A comparison was made between the variation in the concentration of PM10 and that for heavy metals and CO. An excellent similarity was found between the variation model of PM10, heavy metals and CO. Due to the atmospheric concentrations of heavy metals, the enrichment factors were calculated and showed that the well-known toxic heavy metals are mostly released into the city atmosphere from anthropogenic sources.
Environmental Engineering,
Volume 2, Issue 1 , January 2005, , Pages 61-70
Abstract
This article presents the research results on production and performance of palladium-only catalytic converters. Monolith is used as the catalyst carrier and gamma alumina as the substrate. Dipping method is used for monolith washcoating. Palladium as the active metal is impregnated on gamma alumina ...
Read More
This article presents the research results on production and performance of palladium-only catalytic converters. Monolith is used as the catalyst carrier and gamma alumina as the substrate. Dipping method is used for monolith washcoating. Palladium as the active metal is impregnated on gamma alumina using wet impregnation to produce catalyst samples. The effects of factors such as percent solids in slurry, milling time, calcination time and temperature, pH and existence of Al(NO3)3 on wash-coat characteristics were studied experimentally. SEM, XRD and BET tests were carried out on the samples. Catalyst performance was tested in an experimental reactor that was designed for this research. The results show that catalytic activity increases as calcination time increases, whereas it declines as calcination temperature increases. Furthermore, as the slurry pH decreases, the catalytic activity also decreases. It was observed that impregnation of Al(NO3)3 does not have any effect on catalytic activity.