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 The artificial neural network (ANN) approach was applied to develop 
simple correlations for predicting the thermal conductivity of nitrogen-
methane and carbon dioxide-methane mixtures. The genetic algorithm 
method was used to obtain global optimum parameters (weights and 
biases) of the ANNs. The methane mole fraction, temperature, 
pressure, and density as effective parameters on the thermal 
conductivity were network input variables. 171 and 180 data points 
related to the nitrogen-methane and carbon dioxide-methane gas 
mixtures respectively, divided to test and train datasets. Simple 
correlations were obtained due to the small number of optimal neurons 
in the ANN structures. The mean relative errors of 0.206 % and    
0.199 % for the testing dataset indicate the high accuracy and 
validation of the correlations. The work indicates that artificial 
intelligence approaches are very useful for the thermal conductivity 
modeling in natural gases. A sensitivity analysis was performed on all 
input variables that indicates that the gas mixture density has the 
greatest impact on the thermal conductivity. 
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1. Introduction 
The thermal conductivity of a gas mixture 
directly affects the modeling and designing of 
heat transfer systems. On the other side, the 
heat transfer phenomenon is the main process 
in such practical applications of chemical 
engineering as heat exchangers, power plants, 
and steam generators [1, 2]. The measurement 
of the thermal conductivity of all possible 
combinations of all mixtures is not practical. 
Therefore, developing accurate and simple 
predictive correlations is very suitable. 
   There are relatively rare precise 
measurements and models for the thermal 
conductivity of binary mixtures containing 
the natural gas components including 

methane, ethane, propane, nitrogen, and 
carbon dioxide. Patek et al. [3] measured the 
thermal conductivity of gas mixtures of 
carbon dioxide and methane at temperatures 
between 300 and 425 K and pressures up to 
12 MPa at three mole fractions of methane. 
The results related to the low-density analysis 
of the experimental data were employed to 
investigate the estimation of the thermal 
conductivity of nonpolar mixtures for the 
dilute-gas limit proposed in the literature [4]. 
Moreover, the thermal conductivity of gas 
mixtures of nitrogen and methane at 
temperatures between 300 and 425 K and at 
pressures up to 16 MPa were investigated by 
Patek et al. [5]. The measured experimental 
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data have been obtained using transient hot-
wire instruments [6]. 
   The artificial neural network (ANN) model 
as a subset of the artificial intelligence (AI) 
was applied widely in various fields of 
engineering over the last two decades. 
Panerati et al. [7] reviewed the application of 
ANNs such as modeling, classification, and 
prediction in chemical engineering. Pirdashti 
et al. [8] investigated the ANN application in 
the environmental, health and safety and 
nanotechnology fields  and so on. Moreover, 
the ANNs are powerful techniques for solving 
problems related to the physical and 
thermodynamic properties such as viscosity, 
the diffusion coefficient, the thermal 
conductivity, etc. The diffusion coefficients in 
binary liquid [9] or gas mixtures [10], and the 
critical temperature and pressure of binary 
hydrocarbon mixtures [11] were modeled 
using neural network techniques. Ghaderi et 
al. [12] developed ANNs for predicting the 
fluid viscosity in different density ranges. 
They concluded that ANN had suitable 
accuracy in high densities while other 
investigated computational techniques were 
inappropriate for the density of more than 8. 
Fazlali et al. [13] investigated the ANN model 
for estimating vapor-liquid equilibrium data 
for mixtures of water, ethanol and 1-butyl-3-
methylimidazolium acetate. The prediction 
performance was compared with the 
performace of the non-random-two-liquid 
(NRTL) and electrolyte non-random-two-
liquid (eNRTL) approaches. They proved the 
superiority of the neural network. 
Eslamloueyan and Khademi [14] developed 
ANNs for the prediction of thermal 
conductivity of pure gases in atmospheric 
pressure as a function of the critical 
temperature, critical pressure, and molecular 
weight. 

The combination of the neural network and 
genetic algorithm (GA) can lead to an 
increased ANN capability. The GA indicates 
the natural selection procedure in which the 
most appropriate people are selected to 
reproduce next generation children [15, 16]. 
In the ANN-GA modeling procedure, the 
genetic algorithm search technique was used 
to obtain the suitable parameters of the ANN. 
The improved performance for this compound 
has been reported in the literature [17]. 
Beigzadeh et al. [18] used the ANN-GA for 
predicting the heat transfer and pressure loss 
for the air convection on interrupted plate 
fins. The employed data for developing the 
model was acquired using the computational 
fluid dynamics (CFD). Kumar et al. [19] 
investigated the combination of GA with 
ANN and an adaptive network-based fuzzy 
inference system (ANFIS) for improving and 
optimizing the process of the biobleaching of 
the mixed hardwood pulp. 
   The relation between the properties of 
natural gas mixture components and the 
thermal conductivity is complicated. Most 
models presented in the literature for 
estimating the thermal conductivity of natural 
gas are complex and require many 
parameters. In this study, The ANNs have 
been used for developing a regression 
equation to obtain the thermal conductivity of 
natural gases with a high calculation speed 
and accuracy. The neural networks can 
distinguish hidden patterns and nonlinear 
relationships in raw data points and they 
typically use a less statistical training process. 
The study tries to develop simple correlations 
for predicting the thermal conductivity of the 
two gas mixtures including nitrogen-methane 
and carbon dioxide-methane. The developed 
correlations involving all main and effective 
parameters include methane mole fraction, 
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temperature, pressure, and density. The study 
of empirical data revealed a nonlinear relation 
between input and target variables. The 
proposed correlations are accurate, simple, 
and convenient. The validity of the employed 
models was proved by the test data set that 
had no role in the neural network training 
process. 

2. Data collection and preprocessing 
The first stage to develop the neural network 
model is collecting sufficient and suitable 
data points from valid sources to train the 
ANN. A set of 171 and 180 experimental data 
points of the thermal conductivity of nitrogen-
methane and carbon dioxide-methane 
mixtures respectively, was applied to train the 
neuromorphic model. Such experimental data 
is mainly achieved from the experimental 
measurement reported in Refs. [3, 5]. The 
experiments have been made by means of 
transient hot-wire instruments as explained in 
detail in Ref. [6]. The ANN model requires a 
lot of data points for a high prediction 
accuracy. The suitable data points related to 

the thermal conductivity of nitrogen-methane 
and carbon dioxide-methane mixtures were 
found in the used Refs. [3, 5]. The high 
prediction accuracy for the developed ANN 
models indicates the ability of the model for 
other natural gas mixtures. 
   In the present work, the ANN input data 
have been methane mole fraction, 
temperature, pressure, and the density of the 
investigated gas mixtures. The ANN models 
were developed with and without the density 
and it was observed that the use of density as 
the input variable improved the model 
accuracy. All input-output data points were 
divided randomly into two categories 
including training (70 %) and testing (30 %) 
data sets. Table 1 presents the ranges of data 
points used in this research to develop the 
ANN model. All input and output data were 
normalized due to the different ranges of the 
employed data and to expedite the process of 
neural network training. All dependent and 
independent variables were within the normal 
range of 0-1 to prevent any difficulties. The 
calculation is as follows: 

 

valueminimumvaluemaximum
valueminimum valuedatadataNormalized

−
−

=  (1)
 

Table 1 
Range of studied variables for models. 

Variable Nitrogen-Methane Carbon dioxide-Methane 
 Min Max Min Max 

xCH4 0.2507 0.7494 0.2493 0.7496 
T (K) 300 425 300 425 

P (k Pa) 730 15450 724 11970 
ρ (mol/m3) 264.5 6475 297.5 4053 
λ (W/m.K) 0.02858 0.05217 0.02096 0.05348 

 

3. Developing ANN-based correlations 
The artificial neural network (ANN) as a 
subset of the artificial intelligence (AI) is 
related to modeling an intelligent computer 

structure that has properties like human 
intelligence. The developed model has the 
capability of obtaining knowledge and 
reasoning for solving problems. Due to the 
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limitations of the classic theoretical 
approaches in practical applications, 
alternative methods are needed. The ANNs 
are employed to develop predictive models by 
their flexible structure based on several 
parameters (weights and biases). 
   There are some ANN types in which 
multilayer feed-forward networks (MFNs) are 
the most usually used neural networks that are 
able to estimate nearly all forms of complex 
nonlinear relationships with a high accuracy 
[20-22]. There are three main layers in the 
interconnected structure of the ANN. There 
are input, hidden, and output layers and they 
contain one or more neurons. Studies have 
revealed that one hidden layer is sufficient for 
an accurate modeling. The input information 
of the network is transmitted through the 
input layer toward the hidden and output 
layers. The final output of the model is 
calculated as follows: 

n m

k j ji i j k
j=1 i=1

Y=F W F W X +b +b
    
   

    
∑ ∑  

 
(2) 

where n is the number of hidden neurons, m is 
the number of input parameters, X is ANN 
input, the subscripts of "i", "j" and "k" denote 
the ANN layers, and W and b are the network 
weights and biases. F is the transfer function 
to generate the normalized neuron output 
from the hidden and output layers. 
Investigations show that the transfer functions 
of logistic and hyperbolic tangent sigmoids 
are appropriate for modeling several non-
linear problems [23]. 
   The number of neurons in the input and 
output layers is related to the number of input 
and output variables respectively. The key 
step in the development of ANN is to 
determine the optimal number of neurons in 
the hidden layer. The process of determining 
the optimal number of neurons should not 

result in overfitting [24]. The trial-and-error 
procedure seems to be the most reliable 
method for this optimization. In this way, a 
network error is calculated for a small number 
of hidden neurons. The number of neurons 
then increases until the error value does not 
change or increase. 
   Two simple correlations were developed 
using the multi-layer perceptron neural 
networks to predict the thermal conductivity 
of nitrogen-methane and carbon dioxide-
methane mixtures. During the training of 
ANN, the parameters (weights and biases), 
that make the network outputs near to the 
target data, are determined. The Levenberg-
Marquardt back propagation (LM-BP) 
procedure, in which the network was updated 
by a specific training design, was used to 
optimize the weights and biases [25]. 

3.1. Genetic algorithm 
The determination of random initial weights 
and biases of the ANN is the main weakness 
of the back-propagation (BP) method which 
leads to getting trapped in the local minima 
and slow converging. The genetic algorithm 
(GA) can overcome the disadvantages by 
determining the globally optimum values of 
initial weights and biases [26]. The GA 
approach is a useful tool for solving the 
optimization problems. This method is 
inspired by the principle of Darwinian 
evolution. The optimization process starts 
with an initial group of random solutions and 
progresses with iterations for generations to 
improve solutions. The operations of 
selection, crossover, and mutation are the 
main steps of the GA. 
   Figure 1 illustrates the flow chart which has 
been employed in the work and is related to 
the combined neural network method and 
genetic algorithm. Generally, the genetic 
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algorithm applied to four stages to acquire the 
optimal parameters of the ANN [27, 28]: 

• Generating the initial population of 
chromosomes (ANN parameters) randomly. 

• Computing the fitness values (deviations) of 
the ANN. 

• Using the selection, crossover and mutation 

steps to reproduce a new generation. 
• Employing a new population in the next 

generation and if reaching the stopping 
criteria, the final population of parameters 
(weights and biases) was being chosen as 
the GA result. 

Figure 1. Flow chart for the ANN–GA modeling procedure. 
 
   In this study, the numbers of chromosomes 
in the initial population and in the crossover 

fraction were selected as 200 and 0.8 
respectively. The elite children's number was 

No 

No 

Satisfied stopping criteria? 
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Testing the network 
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Produce initial random network parameters 
(W and b) 

Preprocessing data 

Determine the ANN structure 

Compute the error function for new chromosome 
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1 and the GA would stop after 300 
generations (it had practically reached 
optimum results). In the next step, the BP 
technique was used to improve the GA results 
to obtain the optimum solution. 
   The last stage is validating the performance 

of the developed model using the testing data. 
In the work, the mean square error (MSE) and 
the mean relative error (MRE) between the 
experimental and target data were applied to 
evaluate the models, in which N is the total 
number of data used: 

 
N

2
i i

i=1

1MSE= (Target -Experimental data )
N∑

                                                                               (3) 

 

N
i i

i=1 i

Target -Experimental data100MRE (%)=
N target

 
 
 

∑                                                                             (4) 

 
4. Results and discussion 
In the present work, it has been attempted to 
predict the thermal conductivity of two 
natural gases including nitrogen-methane and 
carbon dioxide-methane using precise and 
simple correlations. Two simple correlations 
were developed by the ANN modeling 
procedure. The models were trained based on 
data in the literature at various temperatures, 
pressures, densities, and methane mole 
fractions. Ranges of the employed data in the 
modeling process are shown in Table 1. 
   The examined neural network comprise one 
hidden layer in which the appropriate number 
of neurons was investigated by the trial-and-
error method. Trial-and-error is a problem-
solving technique in which multiple efforts 
are made to obtain an answer. This procedure 
is repeated until getting success (a solution is 
achieved) and guarantees the optimal number 
of neurons in the hidden layer. Figure 2 
shows the trend of MRE values in terms of 
the increase in the number of neurons in the 
hidden layer of the ANN. The performance 
related to both systems is shown in the figure. 
It is clear that there is no significant effect on 
the model performance for more than three 
hidden neurons. In addition, applying more 
neurons leads to complicating the model and 
overfitting [24]. Therefore, ANNs with three 

neurons were considered as optimum 
structures. The MRE and MSE values of the 
developed neural network for predicting the 
thermal conductivity of nitrogen-methane 
were 0.157 % and 7.50×10-9 respectively. 
Moreover, the values of 0.175 % and 
6.09×10-9 were obtained for the carbon 
dioxide-methane mixture. The final output of 
the ANN-GA via input variables can be 
achieved by the parameters (weights and 
biases) of the developed ANN. The obtained 
correlations were reported in Table 2. The 
hyperbolic tangent sigmoid transfer function 
(Fhts) is considered for hidden layers: 

x -x

hts x -x

e -eF (x)=
e +e

                                        (5) 

   A comparison between the model prediction 
values of the thermal conductivity and the 
experimental data is shown in Figures 3 and 
4. It is tried to prove the validation of the 
ANN-GA model in estimating the target data. 
The best fit, in which the predictions are 
equal to the target values, was appeared by a 
solid line. The figures indicate a proper 
coordination between the model estimated 
values and the experimental data. Moreover, 
the accuracy of the developed ANN-GA 
model has been studied through the testing 
data group (thirty percent of the data) which 
was not applied to the training stage. 
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Figure 2. Performance of the ANNs with different numbers of hidden layer neurons. 

 
 

Table 2  
Developed correlations using ANNs. 

Gas mixture Correlation 
Nitrogen-Methane ( )

( )
( )

4

4

4

hts CH

hts CH

hts CH

λ=0.0941-0.0104F -0.2266 x +0.2548T-0.8966P-0.1157ρ+1.1059

-0.0108F 0.8636 x -0.4447T+0.0280P+0.3750ρ-0.7810

+0.0844F 0.2610 x +0.2559T-0.2166P+0.3497ρ-0.9995

 

Carbon Dioxide-Methane ( )
( )
( )

4

4

4

hts CH

hts CH

hts CH

λ=0.0623-0.0573F -0.6033x -1.6382T+0.3369P-1.5725ρ+4.3565

-0.0307F -0.4764 x +1.6682T+3.7421P-5.0307ρ-3.1253

+0.0718F 0.5522 x +1.0274T-1.2815P+1.0948ρ-1.2048

 

 
 

 
Figure 3. Predicted versus experimental data for the thermal conductivity of Nitrogen-Methane. 
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Figure 4. Predicted versus experimental data for the thermal conductivity of Carbon dioxide–Methane. 

 
Table 3 reports the error values related to the 
developed ANN-GA for testing and training 
data. In addition, the estimation results from 
the investigation were compared with 
corresponding correlations in the literature 

[29, 30]. As seen in the table, the ANN–GA 
models have a superior performance for 
approximating the thermal conductivity of the 
investigated gas mixtures. 

 

Table 3 
Deviations of the developed ANN and literature correlations for predicting the thermal conductivity. 

Gas mixture Model 
Data 
group No. of data MRE (%) MSE 

Nitrogen-
Methane 

ANN 
Train 120 0.136 4.58×10-9 
Test 51 0.206 1.44×10-8 

 Total 171 0.157 7.50×10-9 
 Vesovic and Wakehama [29]  2.61 9.96×10-7 
 Jarrahian and Heidaryan [30]   6.312 4.24×10-6 

Carbon dioxide-
Methane 

ANN 
Train 126 0.164 5.41×10-9 
Test 54 0.199 7.68×10-9 

 Total 180 0.175 6.09×10-9 
 Jarrahian and Heidaryan [30]   6.678 4.87×10-6 

 
4.1. Sensitivity analysis using ANN-GA 
parameters 
The importance of each studied effective 
parameter on the thermal conductivity was 
analyzed using the developed method [31]. 
The impacts (Ih) can be found using the 
following equation: 

j i

ji i

n=N N
hj ij jk
hn mn no

n=1 m=1
h n=Nm=N N

ij ij jk
mn mn no

m=1 n=1 m=1

W / W × W
I =

W / W × W

  
  
  

    
   
    

∑ ∑

∑ ∑ ∑
                                                                            (6) 
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where N is the number of neurons, the 
superscripts of i, j and k have been used to 
specify the input, hidden and output layers 
respectively, and ‘m’, ‘n’ and ‘o’ have been 
used to specify the input, hidden and output 
neurons respectively. 
   Figure 5 illustrates the percentage of the 
influence of each considered variable 
including the methane mole fraction (xCH4), 
temperature (T), pressure (P), and density (ρ) 

on the thermal conductivity for two 
investigated systems. As shown, it is clear 
that all input parameters have major 
influences on the thermal conductivity. The 
gas mixture density, with the impact 
percentages of 28.9 and 34.9 % on the output 
parameter for nitrogen-methane and carbon 
dioxide-methane mixtures respectively, has 
the greatest influence. 

 

(a) 

 

(b) 

 

Figure 5. Importance (%) of the studied variables on the thermal conductivity for (a) Nitrogen-Methane 
and (b) Carbon Dioxide–Methane. 
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5. Conclusions 
Two simple and precise correlations were 
developed by genetic algorithm-based neural 
networks to predict the thermal conductivity 
of nitrogen-methane and carbon dioxide-
methane mixtures. Four effective parameters 
including the methane mole fraction, 
temperature, pressure, and density were 
considered as input variables. In the work, 
dividing, selecting, and normalizing were 
used for data pre-processing. The optimum 
configurations of the ANNs with three 
neurons in the hidden layer were obtained by 
the trial-and-error method. The prediction 
accuracy of the neural network-based 
correlations for the testing data indicates the 
ability to estimate the thermal conductivity of 
the investigated systems with a significantly 
lower deviation than that of other alternative 
correlations. The use of the genetic algorithm 
in this work guarantees the finding of optimal 
ANN parameters (weights and biases). The 
accuracy of the developed ANN models was 
compared with recent models presented in the 
literature. The results show that the ANN-GA 
models have a superior performance for 
approximating the thermal conductivity of the 
investigated gas mixtures. A sensitivity 
analysis proved that all the studied parameters 
affected the thermal conductivity and the 
effect of density was greater than that of other 
variables. From the study, it can be concluded 
that a neural network is an appropriate 
approach for the thermal conductivity 
modeling in natural gases. 

Nomenclature 
bJ bias 

F transfer function 

N number of data 

P pressure [kPa]. 

T temperature [K]. 

WJI weight 

Y model output 

Greek symbols 

λ thermal conductivity [W/m.K]. 

ρ density [mol/m3]. 

Subscripts 

i input layer 

j hidden layer 

k output layer 

m input neurons 

n hidden neurons 

o output neurons 

Abbreviations 

MRE Mean relative error 

MSE Mean square error 
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