Adsorption Behavior of Short Alkyl Chain Imidazolium Ionic Liquidsat N-Butyl Acetate + Water Interface: Experiments and Modeling

Document Type: Full article


Bu–Ali Sina University, Hamedan, Iran


e"> The adsorption behavior of three amphiphilic ionic liquids (ILs), 1-alkyl-3- methylimidazolium chloride {[Cnmim][Cl], n=68}at the interface of n-butyl acetate + water system was studied with IL concentration range of 1.00×104-1.00×101 mol·dm3 and temperature range of 293.2-318.2 K. The ILs behave as strong surfactants in this chemical system and significantly reduce the interfacial tension with the order of their alkyl chain length and is consistent with their hydrophobicity nature. An almost linear decrease of interfacial tension with temperature was also relevant. The experimental data were satisfactorily reproduced with Szyszkowski equation, implying an ideal ILs adsorption. In this regard, the Langmuir maximum interface excess and equilibrium adsorption constant were obtained at different temperatures for each IL. Accordingly, effectiveness of adsorption and adsorption tendency increase with the alkyl chain length. At the saturated interface, increasing temperature leads to declining Langmuir maximum interface excess due to disrupting surrounding water molecules around ILs hydrophobic portions. However, adsorption tendency of ILs increases slightly with temperature.


[1]        Sarangi, S. S., Raju, S. G. and Balasubramanian, S., "Molecular dynamics simulations of ionic liquid-vapour interfaces: Effect of cation symmetry on structure at the interface", Phys. Chem. Chem. Phys., 13 (7), 2714 (2011).

[2]        Dong, B., Li, N., Zheng, L., Yu, L. and Inoue, T., "Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution", Langmuir, 23 (8), 4178 (2007).

[3]        Ghatee, M. H. and Zolghadr, A. R., "Surface tension measurements of imidazolium-based ionic liquids at liquid-vapor equilibrium", Fluid Phase Equilib., 263 (2), 168 (2008).

[4]        Azizov, A. H., Aliyeva, R. V., Kalbaliyeva, E. S. and Ibrahimova, M. J., "Selective synthesis and the mechanism of formation of the oligoalkylnaphthenic oils by oligocyclization of 1-hexene in the presence of ionic-liquid catalysts", Appl. Catal. A: Gen., 375 (1), 70 (2010).

[5]        Likhanova, N. V., Domínguez-Aguilar, M. A., Olivares-Xometl, O., Nava-Entzana, N., Arce, E. and Dorantes, H., "The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment", Corros. Sci., 52 (6), 2088 (2010).

[6]        Zhou, Z., Jing, G. and Zhou, L., "Characterization and absorption of carbon dioxide into aqueous solution of amino acid ionic liquid [N1111][Gly] and 2-amino-2-methyl-1-propanol", Chem. Eng. J., 204, 235 (2012).

[7]        Zhang, X. J., Wang, J. Y. and Hu, Y.Q., "Interfacial tension of n-alkane and ionic liquid systems", J. Chem. Eng. Data, 55 (11), 4687 (2010).

[8]        Ha, S. H., Mai, N. L. and Koo, Y. M., "Butanol recovery from aqueous solution into ionic liquids by liquid-liquid extraction", Process Biochem., 45 (12), 1899 (2010).

[9]        Gao, R. and Zheng, J., "Direct electrochemistry of myoglobin based on DNA accumulation on carbon ionic liquid electrode", Electrochem. Commun., 11 (7), 1527 (2009).

[10]      Li, P., Du, Z., Wang, G., Zhi, L. and Huazhong, S., "Adsorption and aggregation behavior of n-undecyl ammonium acetate ionic liquid in aqueous solution", J. Disper. Sci. Technol., 35 (3), 364 (2013).

[11]      Qi, X., Zhang, X., Luo, G., Han, C., Liu, C. and Zhang, S., "Mixing behavior of conventional cationic surfactants and ionic liquid surfactant 1-tetradecyl-3-methylimidazolium bromide ([C14mim]Br) in aqueous medium", J. Disper. Sci. Technol., 34, 125 (2012).

[12]      Zhao, Y., Yue, X., Wang, X., Huang, D. and Chen, X., "Micelle formation by N-alkyl-N-methylpiperidinium bromide ionic liquids in aqueous solution", Colloids. Surf. A, 412, 90 (2012).

[13]      Matsubara, H., Onohara, A., Imai, Y., Shimamoto, K., Takiue, T. and Aratono, M., "Effect of temperature and counterion on adsorption of imidazolium ionic liquids at air-water interface", Colloids Surf. A, 370 (1-3), 113 (2010).

[14]      Srinivasa Rao, K., Gehlot, P. S., Trivedi, T. J. and Kumar, A., "Self-assembly of new surface active ionic liquids based on aerosol-OT in aqueous media", J. Colloid Interface Sci., 428, 267 (2014).

[15]      Saien, J. and Asadabadi, S., "Temperature effect on adsorption of imidazolium-based ionic liquids at liquid–liquid interface", Colloids Surf. A, 431, 34 (2013).

[16]      Misek, T., "Standard Test Systems for Liquid Extraction", Instn. Chem. Engs. for European Federation of Chemical Engineers, Warwickshire, (1985).

[17]      Waheed, M. A., Henschke, M. and Pfennig, A., "Mass transfer by free and forced convection from single spherical liquid drops", Int. J. Heat Mass Transfer, 45 (22), 4507 (2002).

[18]      Saien, J. and Akbari, S., "Variations of interfacial tension of the n-butyl acetate + water system with sodium dodecyl sulfate from (15-22)°C and pH between 6 and 9", J. Chem. Eng. Data, 53 (2), 525 (2008).

[19] Bäumler, K., Wegener, M., Paschedag, A. R. and Bänsch, E., "Drop rise velocities and fluid dynamic behavior in standard test systems for liquid/liquid extraction-experimental and numerical investigations", Chem. Eng. Sci., 66 (3), 426 (2011).

[20]      Torab-Mostaedi, M., Safdari, J. and Torabi-Hokmabadi, F., "Prediction of mean drop size in pulsed packed extraction columns", Iran. J. Chem. Eng. 8 (4), 3 (2011).

[21]      Vaghela, N. M., Sastry, N. V. and Aswal, V. K., "Effect of additives on the surface active and morphological features of 1-octyl-3-methylimidazolium halide aggregates in aqueous media", Colloids Surf. A, 373 (1-3), 101 (2011).

[22]      Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E. and Rogers, R. D., "Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction", Chem. Commun., (16), 1765 (1998).

[23]      Lee, B. B., Ravindra, P. and Chan, E. S., "New drop weight analysis for surface tension determination of liquids", Colloids Surf. A, 332 (2-3), 112 (2009).

[24]      Saien, J., Rezvani Pour, A. and Asadabadi, S., "Interfacial tension of n-hexane-water system under influence of magnetite nanoparticles and sodium dodecyl sulfate assembly at different temperatures", J. Chem. Eng. Data, 59 (6), 1835 (2014).

[25]      Saien, J. and Asadabadi, S., "Adsorption and interfacial properties of individual and mixtures of cationic/nonionic surfactants in toluene + water chemical systems", J. Chem. Eng. Data, 55 (9), 3817 (2010).

[26]      Harkins, W. D. and Brown, F. E., "The determination of surface tension (free surface energy), and the weight of falling drops: The surface tension of water and benzene by the capillary height method", J. Am. Chem. Soc., 41 (4), 499 (1919).

[27]      Bahramian, A. and Danesh, A., "Prediction of liquid-liquid interfacial tension in multi-component systems", Fluid Phase Equilib., 221 (1-2), 197 (2004).

[28]      Apostoluk, W. and Drzymala, J., "An improved estimation of water–organic liquid interfacial tensions based on linear solvation energy relationship approach", J. Colloid Interface Sci., 262 (2), 438 (2003).

[29]      Pashley, R. M. and Karaman, M. E., Applied Colloid and Surface Chemistry, Wiley, Hoboken, (2004).

[30]      Ríos, H. E., González-Navarrete, J., Vargas, V. and Urzúa, M. D., "Surface properties of cationic polyelectrolytes hydrophobically modified", Colloids Surf. A, 384 (1-3), 262 (2011).

[31]      Wang, X., Liu, J., Yu, L., Jiao, J., Wang, R. and Sun, L., "Surface adsorption and micelle formation of imidazolium-based zwitterionic surface active ionic liquids in aqueous solution", J. Colloid Interface Sci., 391, 103 (2013).

[32]      Markin, V. S., Volkova-Gugeshashvili, M. I. and Volkov, A. G., "Adsorption at liquid interfaces:  The generalized Langmuir isotherm and interfacial structure", J. Phys. Chem. B, 110 (23), 11415 (2006).

[33]      Saien, J. and Akbari, S., "Interfacial tension of hydrocarbon + different pH aqueous phase systems in the presence of Triton X-100", Ind. Eng. Chem. Res., 49 (7), 3228 (2010).

[34]      Karakashev, S. I., Nguyen, A. V. and Miller, J.D., "Equilibrium adsorption of surfactants at the gas-liquid interface", Adv. Polym. Sci., 218, 25 (2008).

 [35]     Chattoraj, D. K. and Birdi, K. S., Adsorption and the Gibbs Surface Excess, Plenum Press, New York, (1984).

[36]      Otto, M., Chemometrics: Statistics and Computer Application in Analytical Chemistry, Wiley, New York, (1999).

[37]      Erbil, H. Y., Surface Chemistry of Solid and Liquid Interfaces, Blackwell Publishing, Oxford, (2006).

[38]      Fainerman, V. B., Mobius, D. and Miller, R., Surfactants: Chemistry, Interfacial Properties, Applications, Elsevier, Amsterdam, (2001).

[39]      Radzio, K. and Prochaska, K., "Interfacial activity of trioctyloamine in hydrocarbon/water systems with nonorganic electrolytes", J. Colloid Interface Sci., 233 (2), 211 (2001).