Modification of Montmorillonite and Prediction of Polymer/Clay Affinity Using Surface Properties and Lattice Model

Document Type: Full article


1 1School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

2 School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

3 School of Chemical Engineering, Golestan University, Gorgan, Iran


"> Sodium montmorillonite (Na-MMT) was organically modified using 11- aminoundecanoic acid (AUA) and methacryloxyethyltrimethylammonium chloride (MAETAC) via cation exchange reaction. The effect of the modifier type and concentration on the structure and surface properties of the organically modified montmorillonites (OMMTs) was investigated. According to the results, the basal spacing of organoclays was enlarged considerably with increasing the AUA concentration, while increasing the MAETAC concentration had no significant influence on OMMT’s gallery height. On the other hand, contact angle measurements revealed that increasing the modifiers concentration would increase the hydrophobicity of pristine montmorillonite. The FTIR spectra showed that the OMMTs interlayer environment changed from liquid-like to solid-like as the modifier concentration increased. A mean-field lattice-based model was applied to various polymer/OMMT systems to predict the affinity between the prepared OMMTs and some polymers with different hydrophobicity. The model results showed that high polar and hydrophilic polymers, such as poly(ethylene oxide), exhibit more negative free energy change and stronger interaction with the OMMTs and, consequently, higher potential for preparation of composites with desirable nanostructure and mechanical properties.


[1]        LeBaron, P. C. Wang, Z. and Pinnavaia, T., "Polymer-layered silicate nanocomposites an overview", Appl. Clay Sci., 15, 11 (1999).

[2]        Paul, D. R. and Robeson, L. M., "Polymer nanotechnology: nanocomposites", Polymer, 49, 3187 (2008).

[3]        Bousmina, M., "Study of intercalation and exfoliation processes in polymer nanocomposites", Macromolecules, 39, 4259 (2006).

[4]        Mitall, V., "Polymer chains grafted “to” and “from” layered silicate clay platelets", J. Colloid Interface Sci., 314, 141 (2007).

[5]        Zhang, X. Yang, G. and Lin, J., "Crystallization behavior of nylon 11/montmorillonite nanocomposites under annealing", J. Appl. Polym. Sci., 102, 5483 (2006).

[6]        Han, B. Ji, G. Wu, S. and Shen, J., "Preparation and characterization of nylon 66/montmorillonite nanocomposites with co-treated montmorillonites", Eur. Polym. J., 39, 1641 (2003).

[7]        Shim, J. H. Kim, E. S. Joo, J. H. and Yoon, J. S., "Properties and morphology of poly(L-lactide)/clay composites according to the clay modification", J. Appl. Polym. Sci., 102, 4983 (2006).

[8]        Zhang, X. Yang, G. and Lin, J., "Synthesis, rheology, and morphology of nylon-11/layered silicate Nanocomposite", J. Polym. Sci. Part B: Polym. Phys., 44, 2161 (2006).

[9]        Paiva, L. C. Morales, A. N. and Diaz, F., "Organoclays: properties, preparation and applications", Appl. Clay Sci., 42, 8 (2008).

[10]      Fischer, H., "Polymer nanocomposites from fundamental research to specific applications", Mater. Sci. Eng. C, 23, 763 (2003).

[11]      Pavildou, S. and Papaspyrides, C. D., "A review on polymer–layered silicate nanocomposites", Prog. Polym. Sci., 33, 1119 (2008).

[12]      Vaia, R. A. and Giannelis, E. P. "Lattice model of polymer melt intercalation", Macromolecules, 30, 7990 (1997).

[13]      Vaia, R. A. and Giannelis, E. P., "Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment", Macromolecules, 30, 8000 (1997).

[14]      Ophir, A. Zonder, L. and Rios, P. F., "Thermodynamic characterization of hybrid polymer blend systems", Polym. Eng. Sci., 49, 1168 (2009).

[15]      Meneghetti, P. and Qutubuddin, S., "Application of mean-field model of polymer melt intercalation in organo-silicates for nanocomposites", J. Colloid Interface Sci., 288, 387 (2005).

[16]      Huang, X. and Brittain, W., "Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization", Macromolecules, 34, 3255 (2001).

[17]      Xie, S. Zhang, S. and Wang, F., "Synthesis and characterization of poly(propylene)/montmorillonite nanocomposites by simultaneous grafting-intercalation", J. Appl. Polym. Sci., 94, 1018 (2004).

[18]      Herrera, N. Putaux, J. and Lami, E., "Synthesis of polymer/laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchanged laponite clay platelets", Prog. Solid State Chem., 34, 121 (2006).

[19]      Qutubuddin, S. Fu, X. and Tajuddin, Y., "Synthesis of polystyrene-clay nanocomposites via emulsion polymerization using a reactive surfactant", Polym. Bull., 48, 143 (2002).

[20]      Bouali, B. Ganachaud, F. Chapel, J. P. Pichot, C. and Lanteri, P., "Acid-base approach to latex particles containing specific groups based on wettability measurements", J. Colloid Interface Sci., 208, 81 (1998).

[21]      Zhu, J. He, H. Zhu, L. Wen, X. and Deng, F., "Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR", J. Colloid Interface Sci., 286, 239 (2005).

[22]      Vaia, R. A. Teukolsky, R. K. and Giannelis, E. P., "Interlayer structure and molecular environment of alkylammonium layered silicates", Chem. Mater., 6, 1017 (1994).

[23]      Tiwari, R. R. Khilar, K. C. and Natarajan, U., "Synthesis and characterization of novel organo-montmorillonites", Appl. Clay Sci., 38, 203 (2008).


[24]      He, H. Ray, F. L. and Zhu, J., "Infrared study of HDTMA+ intercalated montmorillonite", Spectrochimica Acta A, 60, 2853 (2004).

[25]      Vasquez, A. Lopez, M. Kortaberria, G., Martin, L. and Mondragon, I., "Modification of montmorillonite with cationic surfactants thermal and chemical analysis including CEC determination", Appl. Clay Sci., 41, 24 (2008).

[26]      Xi, Y. Ray, F. L. and He, H., "Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides", J. Colloid Interface Sci., 305, 150 (2007).