Document Type : Full length

Authors

1 Polymer Research Center , Faculty of Petroleum and Chemical Engineering, Razi University , Kermanshah ,

2 Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran

3 Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract

In this study, a comprehensive model was proposed in order to predict the tensile strength of nanocomposites considering the effects of the random orientation of nanoparticles, interphase properties and also the inevitable aggregation/agglomeration phenomenon. The model was structured based on the nanoparticle shape (e. g. platelet, cylindrical and spherical) so it could perfectly demonstrate the random orientation. It was revealed that neglecting the aggregation/agglomeration of the nanoparticles ( ) drastically rises the prediction error to about 12% while considering decreased the error to about 7-9% for samples with low content of nanoparticles (< 0.5 Vol.). Moreover, the model was completely capable of characterizing the polymer/particle interphase regardless of the polymer type and the nanoparticles shape. Model verification was accomplished by comparing its predictions with the tensile test results of the prepared nanocomposite samples of different compositions (Polystyrene/Silica, Polystyrene/Graphene Oxide and Polystyrene/Carbon nano-tubes). Also, the samples were subjected to TEM in order to qualitatively evaluate the behavior of the different shaped nanoparticles in the polystyrene matrix.

Keywords

[1]      Paul, D. R. and Robeson, L. M., “Polymer nanotechnology: Nanocomposites”, Polymer, 49 (15), 3187 (2008).
[2]      Ramesan, M. T. and Suhailath, K., 13- Role of nanoparticles on polymer composites, in Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends, Mishra, R. K., Thomas, S. and Kalarikkal, N. Editors, Woodhead Publishing, p. 301 (2017).
[3]      Nasir, A., Kausar, A. and Younus, A., “A review on preparation, properties and applications of polymeric nanoparticle-based materials”, Polymer-Plastics Technology and Engineering, 54 (4), 325 (2015).
[4]      Li, S., Meng Lin, M., Toprak, M. S., Kim, D. K. and Muhammed, M., “Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications”, Nano Reviews, 1 (1), (2010). (https://doi.org/10.3402/nano.v1i0.5214).
[5]      Sadasivuni, K. K., Rattan, S., Waseem, S., Brahme, S. K., Kondawar, S. B., Ghosh, S., Das, A. P., Chakraborty, P. K., Adhikari, J., Saha, P. and Mazumdar, P., Silver nanoparticles and its polymer nanocomposites-synthesis, optimization, biomedical usage, and its various applications, in Polymer nanocomposites in biomedical engineering, Sadasivuni, K. K. et al., Editors, Springer International Publishing, Cham, p. 331 (2019).
[6]      Karak, N., Nanomaterials and polymer nanocomposites: Raw materials to applications, Elsevier Science, (2018).
[7]      Pielichowski, K. and Majka, T. M., Polymer composites with functionalized nanoparticles: Synthesis, properties, and applications, Elsevier Science, (2018).
[8]      Sharifzadeh, E., Salami-Kalajahi, M., Hosseini, M. S. and Aghjeh, M. K. R., “Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface”, Colloid. Polym. Sci., 295 (1), 25 (2017).
[9]      Crosby, A. J. and Lee, J. Y., “Polymer nanocomposites: The “Nano” effect on mechanical properties”, Polymer Reviews, 47 (2), 217 (2007).
[10]  Zaragoza, J., Fukuoka, S., Kraus, M., Thomin, J. and Asuri, P., “Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites”, Nanomaterials (Basel, Switzerland), 8 (11), 882 (2018).
[11]  Sallal, H. A., Abdul-Hamead, A. A. and Othman, F. M., “Effect of nano powder (Al2O3-CaO) addition on the mechanical properties of the polymer blend matrix composite”, Defence Technology, (2019).
[12]  Ashraf, M. A., Peng, W., Zare, Y. and Rhee, K. Y., “Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites”, Nanoscale Research Letters, 13 (1), 214 (2018).
[13]  Zhao, W., Li, T., Li, Y., O'Brien, D. J., Terrones, M., Wei, B., Suhr, J. and Lucas Lu, X., “Mechanical properties of nanocomposites reinforced by carbon nanotube sponges”, Journal of Materiomics, 4 (2), 157 (2018).
[14]  Sergueeva, A. V., Hulbert, D. M., Mara, N. A. and Mukherjee, A. K., Chapter 3- Mechanical properties of nanocomposite materials, in Frontiers of nanoscience, Wilde, G. Editor, Elsevier, p. 127 (2009).
[15]  Liu, Y., Wu, H. and Chen, G., “Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling”, Polym. Compos., 37 (4), 1190 (2016).
[16]  Mechanical properties of polymer nanocomposites, in Fundamentals, properties, and applications of polymer nanocomposites, Koo, J. H. Editor, Cambridge University Press, Cambridge, p. 273 (2016).
[17]  Hore, M. J. A., “Polymers on nanoparticles: Structure & dynamics”, Soft Matter, 15 (6), 1120 (2019).
[18]  Hyun, H., Park, J., Willis, K., Park, J. E., Lyle, L. T., Lee, W. and Yeo, Y., “Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors”, Biomaterials, 180, 206 (2018).
[19]  Sharifzadeh, E., “Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface”, Chin. J. Polym. Sci., 37 (2), 164 (2019).
[20]  Jesson, D. A. and Watts, J. F., “The interface and interphase in polymer matrix composites: Effect on mechanical properties and methods for identification”, Polymer Reviews, 52 (3), 321 (2012).
[21]  Zare, Y., “Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology”, J. Colloid Interface Sci., 465, 342 (2016).
[22]  De Gennes, P. G., “Scaling theory of polymer adsorption”, J. Phys. France, 37 (12), 1445 (1976).
[23]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., “A new approach in modeling of mechanical properties of binary phase polymeric blends”, Iran. Polym. J., 23 (7), 525 (2014).
[24]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., "A new approach in modeling of mechanical properties of nanocomposites: Effect of interface region and random orientation”, Iran. Polym. J., 23 (11), 835 (2014).
[25]  Ciprari, D., Jacob, K. and Tannenbaum, R., “Characterization of polymer nanocomposite interphase and its impact on mechanical properties”, Macromolecules, 39 (19), 6565 (2006).
[26]  Zakaria, A. Z. and Shelesh-Nezhad, K., “The effects of interphase and interface characteristics on the tensile behaviour of POM/CaCO3 nanocomposites”, Nanomaterials and Nanotechnology, 4, 17 (2014).
[27]  Seiler, J. and Kindersberger, J., “Insight into the interphase in polymer nanocomposites”, IEEE Transactions on Dielectrics and Electrical Insulation, 21 (2), 537 (2014).
[28]  Sharifzadeh, E., Ghasemi, I. and Safajou-Jahankhanemlou, M., “Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach”, Iran. Polym. J., 24 (9), 735 (2015).
[29]  Sharifzadeh, E., Ghasemi, I. and Qarebagh, A. N., “Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus”, Iran. Polym. J., 24 (12), 1039 (2015).
[30]  Blattmann, C. O. and Pratsinis, S. E., “Nanoparticle filler content and shape in polymer nanocomposites”, KONA Powder and Particle Journal, 36, 3 (2019).
[31]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., Najafi, S., Jannati, R. and Hatef, Z., “Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion”, J. Dispersion Sci. Technol., 38 (7), 985 (2017).
[32]  Zare, Y., “Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties”, Composites Part A: Applied Science and Manufacturing, 84, 158 (2016).
[33]  Zare, Y., “Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase”, J. Colloid Interface Sci., 467, 165 (2016).
[34]  Mittal, V., Modeling and prediction of polymer nanocomposite properties, Wiley, (2012).
[35]  Zare, Y., “The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology”, Composites Part A: Applied Science and Manufacturing, 91, 127 (2016).
[36]  Zhu, L. and Narh, K. A., “Numerical simulation of the tensile modulus of nanoclay-filled polymer composites”, J. Polym. Sci., Part B: Polym. Phys., 42 (12), 2391 (2004).
[37]  Bataille, P., Boissé, S. and Schreiber, H. P., “Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures”, Polym. Eng. Sci., 27 (9), 622 (1987).
[38]  Sharifzadeh, E., “Modeling of the tensile strength of immiscible binary polymer blends considering the effects of polymer/polymer interface and morphological variation”, Chin. J. Polym. Sci., 37, 1176 (2019).
[39]  Zare, Y., “Modeling approach for tensile strength of interphase layers in polymer nanocomposites”, J. Colloid Interface Sci., 471, 89 (2016).
[40]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., “A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: Experimental and theoretical approaches”, Colloids and surfaces. A, 506, 56 (2016).
[41]  Surhone, L. M., Timpledon, M. T. and Marseken, S. F., Von mises yield criterion, VDM Publishing, (2010).
[42]  Leckie, F. A. and Bello, D. J., Strength and stiffness of engineering systems, Springer US, (2009).
[43]  Sharifzadeh, E. and Amiri, Y., “The effects of the arrangement of Janus nanoparticles on the tensile strength of blend-based polymer nanocomposites”, Polym. Compos., (2020). (https://doi.org/10.1002/pc.25645).
[44]  Haghi, A. K., Update on nanofillers in nanocomposites: From introduction to application, Smithers Information Limited, (2013).
[45]  Kumar, C. S. S. R., Nanocomposites, Wiley, (2010).
[46]  Tjong, S. C., “Structural and mechanical properties of polymer nanocomposites”, Materials Science and Engineering: R: Reports, 53 (3), 73 (2006).
[47]  Zare, Y. and Rhee, K. Y., “Evaluation of the tensile strength in carbon nanotube-reinforced nanocomposites using the expanded Takayanagi model”, JOM, 71 (11), 3980 (2019).
[48]  Salam, H. and Dong, Y., “Theoretical modelling analysis on tensile properties of bioepoxy/clay nanocomposites using epoxidised soybean oils”, Journal of Nanomaterials, 2019, 4074869 (2019).
[49]  Ghasemi, F. A., Niyaraki, M. N., Ghasemi, I. and Daneshpayeh, S., “Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology”, Mechanics of Advanced Materials and Structures, 1 (2019).
[50]  Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K. and Walsh, F. C., “Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications”, Nanoscale, 11 (11), 4653 (2019).
[51]  Khan, I., Saeed, K. and Khan, I., “Nanoparticles: Properties, applications and toxicities”, Arabian Journal of Chemistry, 12 (7), 908 (2019).
[52]  Zare, Y. and Rhee, K. Y., “A simulation work for the influences of aggregation/agglomeration of clay layers on the tensile properties of nanocomposites”, JOM, 71 (11), 3989 (2019).
 
[1]      Paul, D. R. and Robeson, L. M., “Polymer nanotechnology: Nanocomposites”, Polymer, 49 (15), 3187 (2008).
[2]      Ramesan, M. T. and Suhailath, K., 13- Role of nanoparticles on polymer composites, in Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends, Mishra, R. K., Thomas, S. and Kalarikkal, N. Editors, Woodhead Publishing, p. 301 (2017).
[3]      Nasir, A., Kausar, A. and Younus, A., “A review on preparation, properties and applications of polymeric nanoparticle-based materials”, Polymer-Plastics Technology and Engineering, 54 (4), 325 (2015).
[4]      Li, S., Meng Lin, M., Toprak, M. S., Kim, D. K. and Muhammed, M., “Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications”, Nano Reviews, 1 (1), (2010). (https://doi.org/10.3402/nano.v1i0.5214).
[5]      Sadasivuni, K. K., Rattan, S., Waseem, S., Brahme, S. K., Kondawar, S. B., Ghosh, S., Das, A. P., Chakraborty, P. K., Adhikari, J., Saha, P. and Mazumdar, P., Silver nanoparticles and its polymer nanocomposites-synthesis, optimization, biomedical usage, and its various applications, in Polymer nanocomposites in biomedical engineering, Sadasivuni, K. K. et al., Editors, Springer International Publishing, Cham, p. 331 (2019).
[6]      Karak, N., Nanomaterials and polymer nanocomposites: Raw materials to applications, Elsevier Science, (2018).
[7]      Pielichowski, K. and Majka, T. M., Polymer composites with functionalized nanoparticles: Synthesis, properties, and applications, Elsevier Science, (2018).
[8]      Sharifzadeh, E., Salami-Kalajahi, M., Hosseini, M. S. and Aghjeh, M. K. R., “Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface”, Colloid. Polym. Sci., 295 (1), 25 (2017).
[9]      Crosby, A. J. and Lee, J. Y., “Polymer nanocomposites: The “Nano” effect on mechanical properties”, Polymer Reviews, 47 (2), 217 (2007).
[10]  Zaragoza, J., Fukuoka, S., Kraus, M., Thomin, J. and Asuri, P., “Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites”, Nanomaterials (Basel, Switzerland), 8 (11), 882 (2018).
[11]  Sallal, H. A., Abdul-Hamead, A. A. and Othman, F. M., “Effect of nano powder (Al2O3-CaO) addition on the mechanical properties of the polymer blend matrix composite”, Defence Technology, (2019).
[12]  Ashraf, M. A., Peng, W., Zare, Y. and Rhee, K. Y., “Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites”, Nanoscale Research Letters, 13 (1), 214 (2018).
[13]  Zhao, W., Li, T., Li, Y., O'Brien, D. J., Terrones, M., Wei, B., Suhr, J. and Lucas Lu, X., “Mechanical properties of nanocomposites reinforced by carbon nanotube sponges”, Journal of Materiomics, 4 (2), 157 (2018).
[14]  Sergueeva, A. V., Hulbert, D. M., Mara, N. A. and Mukherjee, A. K., Chapter 3- Mechanical properties of nanocomposite materials, in Frontiers of nanoscience, Wilde, G. Editor, Elsevier, p. 127 (2009).
[15]  Liu, Y., Wu, H. and Chen, G., “Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling”, Polym. Compos., 37 (4), 1190 (2016).
[16]  Mechanical properties of polymer nanocomposites, in Fundamentals, properties, and applications of polymer nanocomposites, Koo, J. H. Editor, Cambridge University Press, Cambridge, p. 273 (2016).
[17]  Hore, M. J. A., “Polymers on nanoparticles: Structure & dynamics”, Soft Matter, 15 (6), 1120 (2019).
[18]  Hyun, H., Park, J., Willis, K., Park, J. E., Lyle, L. T., Lee, W. and Yeo, Y., “Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors”, Biomaterials, 180, 206 (2018).
[19]  Sharifzadeh, E., “Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface”, Chin. J. Polym. Sci., 37 (2), 164 (2019).
[20]  Jesson, D. A. and Watts, J. F., “The interface and interphase in polymer matrix composites: Effect on mechanical properties and methods for identification”, Polymer Reviews, 52 (3), 321 (2012).
[21]  Zare, Y., “Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology”, J. Colloid Interface Sci., 465, 342 (2016).
[22]  De Gennes, P. G., “Scaling theory of polymer adsorption”, J. Phys. France, 37 (12), 1445 (1976).
[23]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., “A new approach in modeling of mechanical properties of binary phase polymeric blends”, Iran. Polym. J., 23 (7), 525 (2014).
[24]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., "A new approach in modeling of mechanical properties of nanocomposites: Effect of interface region and random orientation”, Iran. Polym. J., 23 (11), 835 (2014).
[25]  Ciprari, D., Jacob, K. and Tannenbaum, R., “Characterization of polymer nanocomposite interphase and its impact on mechanical properties”, Macromolecules, 39 (19), 6565 (2006).
[26]  Zakaria, A. Z. and Shelesh-Nezhad, K., “The effects of interphase and interface characteristics on the tensile behaviour of POM/CaCO3 nanocomposites”, Nanomaterials and Nanotechnology, 4, 17 (2014).
[27]  Seiler, J. and Kindersberger, J., “Insight into the interphase in polymer nanocomposites”, IEEE Transactions on Dielectrics and Electrical Insulation, 21 (2), 537 (2014).
[28]  Sharifzadeh, E., Ghasemi, I. and Safajou-Jahankhanemlou, M., “Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach”, Iran. Polym. J., 24 (9), 735 (2015).
[29]  Sharifzadeh, E., Ghasemi, I. and Qarebagh, A. N., “Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus”, Iran. Polym. J., 24 (12), 1039 (2015).
[30]  Blattmann, C. O. and Pratsinis, S. E., “Nanoparticle filler content and shape in polymer nanocomposites”, KONA Powder and Particle Journal, 36, 3 (2019).
[31]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., Najafi, S., Jannati, R. and Hatef, Z., “Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion”, J. Dispersion Sci. Technol., 38 (7), 985 (2017).
[32]  Zare, Y., “Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties”, Composites Part A: Applied Science and Manufacturing, 84, 158 (2016).
[33]  Zare, Y., “Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase”, J. Colloid Interface Sci., 467, 165 (2016).
[34]  Mittal, V., Modeling and prediction of polymer nanocomposite properties, Wiley, (2012).
[35]  Zare, Y., “The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology”, Composites Part A: Applied Science and Manufacturing, 91, 127 (2016).
[36]  Zhu, L. and Narh, K. A., “Numerical simulation of the tensile modulus of nanoclay-filled polymer composites”, J. Polym. Sci., Part B: Polym. Phys., 42 (12), 2391 (2004).
[37]  Bataille, P., Boissé, S. and Schreiber, H. P., “Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures”, Polym. Eng. Sci., 27 (9), 622 (1987).
[38]  Sharifzadeh, E., “Modeling of the tensile strength of immiscible binary polymer blends considering the effects of polymer/polymer interface and morphological variation”, Chin. J. Polym. Sci., 37, 1176 (2019).
[39]  Zare, Y., “Modeling approach for tensile strength of interphase layers in polymer nanocomposites”, J. Colloid Interface Sci., 471, 89 (2016).
[40]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., “A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: Experimental and theoretical approaches”, Colloids and surfaces. A, 506, 56 (2016).
[41]  Surhone, L. M., Timpledon, M. T. and Marseken, S. F., Von mises yield criterion, VDM Publishing, (2010).
[42]  Leckie, F. A. and Bello, D. J., Strength and stiffness of engineering systems, Springer US, (2009).
[43]  Sharifzadeh, E. and Amiri, Y., “The effects of the arrangement of Janus nanoparticles on the tensile strength of blend-based polymer nanocomposites”, Polym. Compos., (2020). (https://doi.org/10.1002/pc.25645).
[44]  Haghi, A. K., Update on nanofillers in nanocomposites: From introduction to application, Smithers Information Limited, (2013).
[45]  Kumar, C. S. S. R., Nanocomposites, Wiley, (2010).
[46]  Tjong, S. C., “Structural and mechanical properties of polymer nanocomposites”, Materials Science and Engineering: R: Reports, 53 (3), 73 (2006).
[47]  Zare, Y. and Rhee, K. Y., “Evaluation of the tensile strength in carbon nanotube-reinforced nanocomposites using the expanded Takayanagi model”, JOM, 71 (11), 3980 (2019).
[48]  Salam, H. and Dong, Y., “Theoretical modelling analysis on tensile properties of bioepoxy/clay nanocomposites using epoxidised soybean oils”, Journal of Nanomaterials, 2019, 4074869 (2019).
[49]  Ghasemi, F. A., Niyaraki, M. N., Ghasemi, I. and Daneshpayeh, S., “Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology”, Mechanics of Advanced Materials and Structures, 1 (2019).
[50]  Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K. and Walsh, F. C., “Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications”, Nanoscale, 11 (11), 4653 (2019).
[51]  Khan, I., Saeed, K. and Khan, I., “Nanoparticles: Properties, applications and toxicities”, Arabian Journal of Chemistry, 12 (7), 908 (2019).
[52]  Zare, Y. and Rhee, K. Y., “A simulation work for the influences of aggregation/agglomeration of clay layers on the tensile properties of nanocomposites”, JOM, 71 (11), 3989 (2019).
 
 
 
 
[1]      Paul, D. R. and Robeson, L. M., “Polymer nanotechnology: Nanocomposites”, Polymer, 49 (15), 3187 (2008).
[2]      Ramesan, M. T. and Suhailath, K., 13- Role of nanoparticles on polymer composites, in Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends, Mishra, R. K., Thomas, S. and Kalarikkal, N. Editors, Woodhead Publishing, p. 301 (2017).
[3]      Nasir, A., Kausar, A. and Younus, A., “A review on preparation, properties and applications of polymeric nanoparticle-based materials”, Polymer-Plastics Technology and Engineering, 54 (4), 325 (2015).
[4]      Li, S., Meng Lin, M., Toprak, M. S., Kim, D. K. and Muhammed, M., “Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications”, Nano Reviews, 1 (1), (2010). (https://doi.org/10.3402/nano.v1i0.5214).
[5]      Sadasivuni, K. K., Rattan, S., Waseem, S., Brahme, S. K., Kondawar, S. B., Ghosh, S., Das, A. P., Chakraborty, P. K., Adhikari, J., Saha, P. and Mazumdar, P., Silver nanoparticles and its polymer nanocomposites-synthesis, optimization, biomedical usage, and its various applications, in Polymer nanocomposites in biomedical engineering, Sadasivuni, K. K. et al., Editors, Springer International Publishing, Cham, p. 331 (2019).
[6]      Karak, N., Nanomaterials and polymer nanocomposites: Raw materials to applications, Elsevier Science, (2018).
[7]      Pielichowski, K. and Majka, T. M., Polymer composites with functionalized nanoparticles: Synthesis, properties, and applications, Elsevier Science, (2018).
[8]      Sharifzadeh, E., Salami-Kalajahi, M., Hosseini, M. S. and Aghjeh, M. K. R., “Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface”, Colloid. Polym. Sci., 295 (1), 25 (2017).
[9]      Crosby, A. J. and Lee, J. Y., “Polymer nanocomposites: The “Nano” effect on mechanical properties”, Polymer Reviews, 47 (2), 217 (2007).
[10]  Zaragoza, J., Fukuoka, S., Kraus, M., Thomin, J. and Asuri, P., “Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites”, Nanomaterials (Basel, Switzerland), 8 (11), 882 (2018).
[11]  Sallal, H. A., Abdul-Hamead, A. A. and Othman, F. M., “Effect of nano powder (Al2O3-CaO) addition on the mechanical properties of the polymer blend matrix composite”, Defence Technology, (2019).
[12]  Ashraf, M. A., Peng, W., Zare, Y. and Rhee, K. Y., “Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites”, Nanoscale Research Letters, 13 (1), 214 (2018).
[13]  Zhao, W., Li, T., Li, Y., O'Brien, D. J., Terrones, M., Wei, B., Suhr, J. and Lucas Lu, X., “Mechanical properties of nanocomposites reinforced by carbon nanotube sponges”, Journal of Materiomics, 4 (2), 157 (2018).
[14]  Sergueeva, A. V., Hulbert, D. M., Mara, N. A. and Mukherjee, A. K., Chapter 3- Mechanical properties of nanocomposite materials, in Frontiers of nanoscience, Wilde, G. Editor, Elsevier, p. 127 (2009).
[15]  Liu, Y., Wu, H. and Chen, G., “Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling”, Polym. Compos., 37 (4), 1190 (2016).
[16]  Mechanical properties of polymer nanocomposites, in Fundamentals, properties, and applications of polymer nanocomposites, Koo, J. H. Editor, Cambridge University Press, Cambridge, p. 273 (2016).
[17]  Hore, M. J. A., “Polymers on nanoparticles: Structure & dynamics”, Soft Matter, 15 (6), 1120 (2019).
[18]  Hyun, H., Park, J., Willis, K., Park, J. E., Lyle, L. T., Lee, W. and Yeo, Y., “Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors”, Biomaterials, 180, 206 (2018).
[19]  Sharifzadeh, E., “Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface”, Chin. J. Polym. Sci., 37 (2), 164 (2019).
[20]  Jesson, D. A. and Watts, J. F., “The interface and interphase in polymer matrix composites: Effect on mechanical properties and methods for identification”, Polymer Reviews, 52 (3), 321 (2012).
[21]  Zare, Y., “Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology”, J. Colloid Interface Sci., 465, 342 (2016).
[22]  De Gennes, P. G., “Scaling theory of polymer adsorption”, J. Phys. France, 37 (12), 1445 (1976).
[23]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., “A new approach in modeling of mechanical properties of binary phase polymeric blends”, Iran. Polym. J., 23 (7), 525 (2014).
[24]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., "A new approach in modeling of mechanical properties of nanocomposites: Effect of interface region and random orientation”, Iran. Polym. J., 23 (11), 835 (2014).
[25]  Ciprari, D., Jacob, K. and Tannenbaum, R., “Characterization of polymer nanocomposite interphase and its impact on mechanical properties”, Macromolecules, 39 (19), 6565 (2006).
[26]  Zakaria, A. Z. and Shelesh-Nezhad, K., “The effects of interphase and interface characteristics on the tensile behaviour of POM/CaCO3 nanocomposites”, Nanomaterials and Nanotechnology, 4, 17 (2014).
[27]  Seiler, J. and Kindersberger, J., “Insight into the interphase in polymer nanocomposites”, IEEE Transactions on Dielectrics and Electrical Insulation, 21 (2), 537 (2014).
[28]  Sharifzadeh, E., Ghasemi, I. and Safajou-Jahankhanemlou, M., “Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach”, Iran. Polym. J., 24 (9), 735 (2015).
[29]  Sharifzadeh, E., Ghasemi, I. and Qarebagh, A. N., “Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus”, Iran. Polym. J., 24 (12), 1039 (2015).
[30]  Blattmann, C. O. and Pratsinis, S. E., “Nanoparticle filler content and shape in polymer nanocomposites”, KONA Powder and Particle Journal, 36, 3 (2019).
[31]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., Najafi, S., Jannati, R. and Hatef, Z., “Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion”, J. Dispersion Sci. Technol., 38 (7), 985 (2017).
[32]  Zare, Y., “Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties”, Composites Part A: Applied Science and Manufacturing, 84, 158 (2016).
[33]  Zare, Y., “Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase”, J. Colloid Interface Sci., 467, 165 (2016).
[34]  Mittal, V., Modeling and prediction of polymer nanocomposite properties, Wiley, (2012).
[35]  Zare, Y., “The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology”, Composites Part A: Applied Science and Manufacturing, 91, 127 (2016).
[36]  Zhu, L. and Narh, K. A., “Numerical simulation of the tensile modulus of nanoclay-filled polymer composites”, J. Polym. Sci., Part B: Polym. Phys., 42 (12), 2391 (2004).
[37]  Bataille, P., Boissé, S. and Schreiber, H. P., “Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures”, Polym. Eng. Sci., 27 (9), 622 (1987).
[38]  Sharifzadeh, E., “Modeling of the tensile strength of immiscible binary polymer blends considering the effects of polymer/polymer interface and morphological variation”, Chin. J. Polym. Sci., 37, 1176 (2019).
[39]  Zare, Y., “Modeling approach for tensile strength of interphase layers in polymer nanocomposites”, J. Colloid Interface Sci., 471, 89 (2016).
[40]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., “A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: Experimental and theoretical approaches”, Colloids and surfaces. A, 506, 56 (2016).
[41]  Surhone, L. M., Timpledon, M. T. and Marseken, S. F., Von mises yield criterion, VDM Publishing, (2010).
[42]  Leckie, F. A. and Bello, D. J., Strength and stiffness of engineering systems, Springer US, (2009).
[43]  Sharifzadeh, E. and Amiri, Y., “The effects of the arrangement of Janus nanoparticles on the tensile strength of blend-based polymer nanocomposites”, Polym. Compos., (2020). (https://doi.org/10.1002/pc.25645).
[44]  Haghi, A. K., Update on nanofillers in nanocomposites: From introduction to application, Smithers Information Limited, (2013).
[45]  Kumar, C. S. S. R., Nanocomposites, Wiley, (2010).
[46]  Tjong, S. C., “Structural and mechanical properties of polymer nanocomposites”, Materials Science and Engineering: R: Reports, 53 (3), 73 (2006).
[47]  Zare, Y. and Rhee, K. Y., “Evaluation of the tensile strength in carbon nanotube-reinforced nanocomposites using the expanded Takayanagi model”, JOM, 71 (11), 3980 (2019).
[48]  Salam, H. and Dong, Y., “Theoretical modelling analysis on tensile properties of bioepoxy/clay nanocomposites using epoxidised soybean oils”, Journal of Nanomaterials, 2019, 4074869 (2019).
[49]  Ghasemi, F. A., Niyaraki, M. N., Ghasemi, I. and Daneshpayeh, S., “Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology”, Mechanics of Advanced Materials and Structures, 1 (2019).
[50]  Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K. and Walsh, F. C., “Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications”, Nanoscale, 11 (11), 4653 (2019).
[51]  Khan, I., Saeed, K. and Khan, I., “Nanoparticles: Properties, applications and toxicities”, Arabian Journal of Chemistry, 12 (7), 908 (2019).
[52]  Zare, Y. and Rhee, K. Y., “A simulation work for the influences of aggregation/agglomeration of clay layers on the tensile properties of nanocomposites”, JOM, 71 (11), 3989 (2019).
[1]      Paul, D. R. and Robeson, L. M., “Polymer nanotechnology: Nanocomposites”, Polymer, 49 (15), 3187 (2008).
[2]      Ramesan, M. T. and Suhailath, K., 13- Role of nanoparticles on polymer composites, in Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends, Mishra, R. K., Thomas, S. and Kalarikkal, N. Editors, Woodhead Publishing, p. 301 (2017).
[3]      Nasir, A., Kausar, A. and Younus, A., “A review on preparation, properties and applications of polymeric nanoparticle-based materials”, Polymer-Plastics Technology and Engineering, 54 (4), 325 (2015).
[4]      Li, S., Meng Lin, M., Toprak, M. S., Kim, D. K. and Muhammed, M., “Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications”, Nano Reviews, 1 (1), (2010). (https://doi.org/10.3402/nano.v1i0.5214).
[5]      Sadasivuni, K. K., Rattan, S., Waseem, S., Brahme, S. K., Kondawar, S. B., Ghosh, S., Das, A. P., Chakraborty, P. K., Adhikari, J., Saha, P. and Mazumdar, P., Silver nanoparticles and its polymer nanocomposites-synthesis, optimization, biomedical usage, and its various applications, in Polymer nanocomposites in biomedical engineering, Sadasivuni, K. K. et al., Editors, Springer International Publishing, Cham, p. 331 (2019).
[6]      Karak, N., Nanomaterials and polymer nanocomposites: Raw materials to applications, Elsevier Science, (2018).
[7]      Pielichowski, K. and Majka, T. M., Polymer composites with functionalized nanoparticles: Synthesis, properties, and applications, Elsevier Science, (2018).
[8]      Sharifzadeh, E., Salami-Kalajahi, M., Hosseini, M. S. and Aghjeh, M. K. R., “Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface”, Colloid. Polym. Sci., 295 (1), 25 (2017).
[9]      Crosby, A. J. and Lee, J. Y., “Polymer nanocomposites: The “Nano” effect on mechanical properties”, Polymer Reviews, 47 (2), 217 (2007).
[10]  Zaragoza, J., Fukuoka, S., Kraus, M., Thomin, J. and Asuri, P., “Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites”, Nanomaterials (Basel, Switzerland), 8 (11), 882 (2018).
[11]  Sallal, H. A., Abdul-Hamead, A. A. and Othman, F. M., “Effect of nano powder (Al2O3-CaO) addition on the mechanical properties of the polymer blend matrix composite”, Defence Technology, (2019).
[12]  Ashraf, M. A., Peng, W., Zare, Y. and Rhee, K. Y., “Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites”, Nanoscale Research Letters, 13 (1), 214 (2018).
[13]  Zhao, W., Li, T., Li, Y., O'Brien, D. J., Terrones, M., Wei, B., Suhr, J. and Lucas Lu, X., “Mechanical properties of nanocomposites reinforced by carbon nanotube sponges”, Journal of Materiomics, 4 (2), 157 (2018).
[14]  Sergueeva, A. V., Hulbert, D. M., Mara, N. A. and Mukherjee, A. K., Chapter 3- Mechanical properties of nanocomposite materials, in Frontiers of nanoscience, Wilde, G. Editor, Elsevier, p. 127 (2009).
[15]  Liu, Y., Wu, H. and Chen, G., “Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling”, Polym. Compos., 37 (4), 1190 (2016).
[16]  Mechanical properties of polymer nanocomposites, in Fundamentals, properties, and applications of polymer nanocomposites, Koo, J. H. Editor, Cambridge University Press, Cambridge, p. 273 (2016).
[17]  Hore, M. J. A., “Polymers on nanoparticles: Structure & dynamics”, Soft Matter, 15 (6), 1120 (2019).
[18]  Hyun, H., Park, J., Willis, K., Park, J. E., Lyle, L. T., Lee, W. and Yeo, Y., “Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors”, Biomaterials, 180, 206 (2018).
[19]  Sharifzadeh, E., “Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface”, Chin. J. Polym. Sci., 37 (2), 164 (2019).
[20]  Jesson, D. A. and Watts, J. F., “The interface and interphase in polymer matrix composites: Effect on mechanical properties and methods for identification”, Polymer Reviews, 52 (3), 321 (2012).
[21]  Zare, Y., “Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology”, J. Colloid Interface Sci., 465, 342 (2016).
[22]  De Gennes, P. G., “Scaling theory of polymer adsorption”, J. Phys. France, 37 (12), 1445 (1976).
[23]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., “A new approach in modeling of mechanical properties of binary phase polymeric blends”, Iran. Polym. J., 23 (7), 525 (2014).
[24]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., "A new approach in modeling of mechanical properties of nanocomposites: Effect of interface region and random orientation”, Iran. Polym. J., 23 (11), 835 (2014).
[25]  Ciprari, D., Jacob, K. and Tannenbaum, R., “Characterization of polymer nanocomposite interphase and its impact on mechanical properties”, Macromolecules, 39 (19), 6565 (2006).
[26]  Zakaria, A. Z. and Shelesh-Nezhad, K., “The effects of interphase and interface characteristics on the tensile behaviour of POM/CaCO3 nanocomposites”, Nanomaterials and Nanotechnology, 4, 17 (2014).
[27]  Seiler, J. and Kindersberger, J., “Insight into the interphase in polymer nanocomposites”, IEEE Transactions on Dielectrics and Electrical Insulation, 21 (2), 537 (2014).
[28]  Sharifzadeh, E., Ghasemi, I. and Safajou-Jahankhanemlou, M., “Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach”, Iran. Polym. J., 24 (9), 735 (2015).
[29]  Sharifzadeh, E., Ghasemi, I. and Qarebagh, A. N., “Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus”, Iran. Polym. J., 24 (12), 1039 (2015).
[30]  Blattmann, C. O. and Pratsinis, S. E., “Nanoparticle filler content and shape in polymer nanocomposites”, KONA Powder and Particle Journal, 36, 3 (2019).
[31]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., Najafi, S., Jannati, R. and Hatef, Z., “Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion”, J. Dispersion Sci. Technol., 38 (7), 985 (2017).
[32]  Zare, Y., “Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties”, Composites Part A: Applied Science and Manufacturing, 84, 158 (2016).
[33]  Zare, Y., “Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase”, J. Colloid Interface Sci., 467, 165 (2016).
[34]  Mittal, V., Modeling and prediction of polymer nanocomposite properties, Wiley, (2012).
[35]  Zare, Y., “The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology”, Composites Part A: Applied Science and Manufacturing, 91, 127 (2016).
[36]  Zhu, L. and Narh, K. A., “Numerical simulation of the tensile modulus of nanoclay-filled polymer composites”, J. Polym. Sci., Part B: Polym. Phys., 42 (12), 2391 (2004).
[37]  Bataille, P., Boissé, S. and Schreiber, H. P., “Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures”, Polym. Eng. Sci., 27 (9), 622 (1987).
[38]  Sharifzadeh, E., “Modeling of the tensile strength of immiscible binary polymer blends considering the effects of polymer/polymer interface and morphological variation”, Chin. J. Polym. Sci., 37, 1176 (2019).
[39]  Zare, Y., “Modeling approach for tensile strength of interphase layers in polymer nanocomposites”, J. Colloid Interface Sci., 471, 89 (2016).
[40]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., “A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: Experimental and theoretical approaches”, Colloids and surfaces. A, 506, 56 (2016).
[41]  Surhone, L. M., Timpledon, M. T. and Marseken, S. F., Von mises yield criterion, VDM Publishing, (2010).
[42]  Leckie, F. A. and Bello, D. J., Strength and stiffness of engineering systems, Springer US, (2009).
[43]  Sharifzadeh, E. and Amiri, Y., “The effects of the arrangement of Janus nanoparticles on the tensile strength of blend-based polymer nanocomposites”, Polym. Compos., (2020). (https://doi.org/10.1002/pc.25645).
[44]  Haghi, A. K., Update on nanofillers in nanocomposites: From introduction to application, Smithers Information Limited, (2013).
[45]  Kumar, C. S. S. R., Nanocomposites, Wiley, (2010).
[46]  Tjong, S. C., “Structural and mechanical properties of polymer nanocomposites”, Materials Science and Engineering: R: Reports, 53 (3), 73 (2006).
[47]  Zare, Y. and Rhee, K. Y., “Evaluation of the tensile strength in carbon nanotube-reinforced nanocomposites using the expanded Takayanagi model”, JOM, 71 (11), 3980 (2019).
[48]  Salam, H. and Dong, Y., “Theoretical modelling analysis on tensile properties of bioepoxy/clay nanocomposites using epoxidised soybean oils”, Journal of Nanomaterials, 2019, 4074869 (2019).
[49]  Ghasemi, F. A., Niyaraki, M. N., Ghasemi, I. and Daneshpayeh, S., “Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology”, Mechanics of Advanced Materials and Structures, 1 (2019).
[50]  Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K. and Walsh, F. C., “Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications”, Nanoscale, 11 (11), 4653 (2019).
[51]  Khan, I., Saeed, K. and Khan, I., “Nanoparticles: Properties, applications and toxicities”, Arabian Journal of Chemistry, 12 (7), 908 (2019).
[52]  Zare, Y. and Rhee, K. Y., “A simulation work for the influences of aggregation/agglomeration of clay layers on the tensile properties of nanocomposites”, JOM, 71 (11), 3989 (2019).
 
[1]      Paul, D. R. and Robeson, L. M., “Polymer nanotechnology: Nanocomposites”, Polymer, 49 (15), 3187 (2008).
[2]      Ramesan, M. T. and Suhailath, K., 13- Role of nanoparticles on polymer composites, in Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends, Mishra, R. K., Thomas, S. and Kalarikkal, N. Editors, Woodhead Publishing, p. 301 (2017).
[3]      Nasir, A., Kausar, A. and Younus, A., “A review on preparation, properties and applications of polymeric nanoparticle-based materials”, Polymer-Plastics Technology and Engineering, 54 (4), 325 (2015).
[4]      Li, S., Meng Lin, M., Toprak, M. S., Kim, D. K. and Muhammed, M., “Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications”, Nano Reviews, 1 (1), (2010). (https://doi.org/10.3402/nano.v1i0.5214).
[5]      Sadasivuni, K. K., Rattan, S., Waseem, S., Brahme, S. K., Kondawar, S. B., Ghosh, S., Das, A. P., Chakraborty, P. K., Adhikari, J., Saha, P. and Mazumdar, P., Silver nanoparticles and its polymer nanocomposites-synthesis, optimization, biomedical usage, and its various applications, in Polymer nanocomposites in biomedical engineering, Sadasivuni, K. K. et al., Editors, Springer International Publishing, Cham, p. 331 (2019).
[6]      Karak, N., Nanomaterials and polymer nanocomposites: Raw materials to applications, Elsevier Science, (2018).
[7]      Pielichowski, K. and Majka, T. M., Polymer composites with functionalized nanoparticles: Synthesis, properties, and applications, Elsevier Science, (2018).
[8]      Sharifzadeh, E., Salami-Kalajahi, M., Hosseini, M. S. and Aghjeh, M. K. R., “Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface”, Colloid. Polym. Sci., 295 (1), 25 (2017).
[9]      Crosby, A. J. and Lee, J. Y., “Polymer nanocomposites: The “Nano” effect on mechanical properties”, Polymer Reviews, 47 (2), 217 (2007).
[10]  Zaragoza, J., Fukuoka, S., Kraus, M., Thomin, J. and Asuri, P., “Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites”, Nanomaterials (Basel, Switzerland), 8 (11), 882 (2018).
[11]  Sallal, H. A., Abdul-Hamead, A. A. and Othman, F. M., “Effect of nano powder (Al2O3-CaO) addition on the mechanical properties of the polymer blend matrix composite”, Defence Technology, (2019).
[12]  Ashraf, M. A., Peng, W., Zare, Y. and Rhee, K. Y., “Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites”, Nanoscale Research Letters, 13 (1), 214 (2018).
[13]  Zhao, W., Li, T., Li, Y., O'Brien, D. J., Terrones, M., Wei, B., Suhr, J. and Lucas Lu, X., “Mechanical properties of nanocomposites reinforced by carbon nanotube sponges”, Journal of Materiomics, 4 (2), 157 (2018).
[14]  Sergueeva, A. V., Hulbert, D. M., Mara, N. A. and Mukherjee, A. K., Chapter 3- Mechanical properties of nanocomposite materials, in Frontiers of nanoscience, Wilde, G. Editor, Elsevier, p. 127 (2009).
[15]  Liu, Y., Wu, H. and Chen, G., “Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling”, Polym. Compos., 37 (4), 1190 (2016).
[16]  Mechanical properties of polymer nanocomposites, in Fundamentals, properties, and applications of polymer nanocomposites, Koo, J. H. Editor, Cambridge University Press, Cambridge, p. 273 (2016).
[17]  Hore, M. J. A., “Polymers on nanoparticles: Structure & dynamics”, Soft Matter, 15 (6), 1120 (2019).
[18]  Hyun, H., Park, J., Willis, K., Park, J. E., Lyle, L. T., Lee, W. and Yeo, Y., “Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors”, Biomaterials, 180, 206 (2018).
[19]  Sharifzadeh, E., “Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface”, Chin. J. Polym. Sci., 37 (2), 164 (2019).
[20]  Jesson, D. A. and Watts, J. F., “The interface and interphase in polymer matrix composites: Effect on mechanical properties and methods for identification”, Polymer Reviews, 52 (3), 321 (2012).
[21]  Zare, Y., “Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology”, J. Colloid Interface Sci., 465, 342 (2016).
[22]  De Gennes, P. G., “Scaling theory of polymer adsorption”, J. Phys. France, 37 (12), 1445 (1976).
[23]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., “A new approach in modeling of mechanical properties of binary phase polymeric blends”, Iran. Polym. J., 23 (7), 525 (2014).
[24]  Sharifzadeh, E., Ghasemi, I., Karrabi, M. and Azizi, H., "A new approach in modeling of mechanical properties of nanocomposites: Effect of interface region and random orientation”, Iran. Polym. J., 23 (11), 835 (2014).
[25]  Ciprari, D., Jacob, K. and Tannenbaum, R., “Characterization of polymer nanocomposite interphase and its impact on mechanical properties”, Macromolecules, 39 (19), 6565 (2006).
[26]  Zakaria, A. Z. and Shelesh-Nezhad, K., “The effects of interphase and interface characteristics on the tensile behaviour of POM/CaCO3 nanocomposites”, Nanomaterials and Nanotechnology, 4, 17 (2014).
[27]  Seiler, J. and Kindersberger, J., “Insight into the interphase in polymer nanocomposites”, IEEE Transactions on Dielectrics and Electrical Insulation, 21 (2), 537 (2014).
[28]  Sharifzadeh, E., Ghasemi, I. and Safajou-Jahankhanemlou, M., “Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach”, Iran. Polym. J., 24 (9), 735 (2015).
[29]  Sharifzadeh, E., Ghasemi, I. and Qarebagh, A. N., “Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus”, Iran. Polym. J., 24 (12), 1039 (2015).
[30]  Blattmann, C. O. and Pratsinis, S. E., “Nanoparticle filler content and shape in polymer nanocomposites”, KONA Powder and Particle Journal, 36, 3 (2019).
[31]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., Najafi, S., Jannati, R. and Hatef, Z., “Defining the characteristics of spherical Janus particles by investigating the behavior of their corresponding particles at the oil/water interface in a Pickering emulsion”, J. Dispersion Sci. Technol., 38 (7), 985 (2017).
[32]  Zare, Y., “Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties”, Composites Part A: Applied Science and Manufacturing, 84, 158 (2016).
[33]  Zare, Y., “Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase”, J. Colloid Interface Sci., 467, 165 (2016).
[34]  Mittal, V., Modeling and prediction of polymer nanocomposite properties, Wiley, (2012).
[35]  Zare, Y., “The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology”, Composites Part A: Applied Science and Manufacturing, 91, 127 (2016).
[36]  Zhu, L. and Narh, K. A., “Numerical simulation of the tensile modulus of nanoclay-filled polymer composites”, J. Polym. Sci., Part B: Polym. Phys., 42 (12), 2391 (2004).
[37]  Bataille, P., Boissé, S. and Schreiber, H. P., “Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures”, Polym. Eng. Sci., 27 (9), 622 (1987).
[38]  Sharifzadeh, E., “Modeling of the tensile strength of immiscible binary polymer blends considering the effects of polymer/polymer interface and morphological variation”, Chin. J. Polym. Sci., 37, 1176 (2019).
[39]  Zare, Y., “Modeling approach for tensile strength of interphase layers in polymer nanocomposites”, J. Colloid Interface Sci., 471, 89 (2016).
[40]  Sharifzadeh, E., Salami-Kalajahi, M., Salami Hosseini, M., Razavi Aghjeh, M. K., “A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: Experimental and theoretical approaches”, Colloids and surfaces. A, 506, 56 (2016).
[41]  Surhone, L. M., Timpledon, M. T. and Marseken, S. F., Von mises yield criterion, VDM Publishing, (2010).
[42]  Leckie, F. A. and Bello, D. J., Strength and stiffness of engineering systems, Springer US, (2009).
[43]  Sharifzadeh, E. and Amiri, Y., “The effects of the arrangement of Janus nanoparticles on the tensile strength of blend-based polymer nanocomposites”, Polym. Compos., (2020). (https://doi.org/10.1002/pc.25645).
[44]  Haghi, A. K., Update on nanofillers in nanocomposites: From introduction to application, Smithers Information Limited, (2013).
[45]  Kumar, C. S. S. R., Nanocomposites, Wiley, (2010).
[46]  Tjong, S. C., “Structural and mechanical properties of polymer nanocomposites”, Materials Science and Engineering: R: Reports, 53 (3), 73 (2006).
[47]  Zare, Y. and Rhee, K. Y., “Evaluation of the tensile strength in carbon nanotube-reinforced nanocomposites using the expanded Takayanagi model”, JOM, 71 (11), 3980 (2019).
[48]  Salam, H. and Dong, Y., “Theoretical modelling analysis on tensile properties of bioepoxy/clay nanocomposites using epoxidised soybean oils”, Journal of Nanomaterials, 2019, 4074869 (2019).
[49]  Ghasemi, F. A., Niyaraki, M. N., Ghasemi, I. and Daneshpayeh, S., “Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology”, Mechanics of Advanced Materials and Structures, 1 (2019).
[50]  Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K. and Walsh, F. C., “Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications”, Nanoscale, 11 (11), 4653 (2019).
[51]  Khan, I., Saeed, K. and Khan, I., “Nanoparticles: Properties, applications and toxicities”, Arabian Journal of Chemistry, 12 (7), 908 (2019).
[52]  Zare, Y. and Rhee, K. Y., “A simulation work for the influences of aggregation/agglomeration of clay layers on the tensile properties of nanocomposites”, JOM, 71 (11), 3989 (2019).