Document Type : Regular Article


1 Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

2 Kermanshah University of Technology


In the presented research, the selective hydrogenation of benzene in a mixture of benzene and normal heptane (5 vol % of benzene) over different kinds of heterogeneous catalysts was investigated. For this purpose, a series of catalysts with various supports such as Pd/ZSM-5, Pd/13X and Pd/  was developed. To prepare Pd supported catalysts, the modification of supports was conducted by a specified amount of palladium nitrate in the aqueous solution. Experimental catalyst evaluation tests were performed in the catalyst assessment set-up. The characterizations of the physicochemical properties of the prepared catalysts were performed by XRD, NH-TPD and BET. It can be found that the conversion of benzene was promoted under the optimized reaction conditions of 200 °C, 1 MPa, H2/HC = 1.3 (molar ratio) and the weight hourly space velocity (WHSV) = 25 hr-1. Among these catalysts, Pd/13X exhibited the maximum conversion of benzene (90 %) and the minimum light-cut production under the optimum conditions. The study on the stability of catalysts shows that, the decline activity of Pd/13X catalyst is more than that of the other catalysts (from 90 % to 81 %) in the specified 20 h time on stream, but so far the activity of this catalyst is the highest in comparison with that of other catalysts at the end of the defined time (20 h).


Main Subjects


    • Stähelin, P. M., Valério, A., Ulson de Souza, S. M. de A. G., da Silva, A., Borges Valle, J. A. and Ulson de Souza, A. A., “Benzene and toluene removal from synthetic automotive gasoline by mono and bicomponent adsorption process”, Fuel, 231, 45 (2018).
    • Correa, S. M., Arbilla, G., Marques, M. R. C. and Oliveira, K. M. P. G., “The impact of BTEX emissions from gas stations into the atmosphere”, Atmospheric Pollution Research, 3, 163 (2012).
    • Abdel Maksoud, A., Mohamed, G. E., Mahfouz, M. K., Omnia, M. A., Abdullahc, M. H. and Eltabey, M. E., “Biochemical study on occupational inhalation of benzene vapours in petrol station”, Respir. Med. Case Reports, 27, 100836 (2019).
    • Smith, M. T., Zhang, L., McHale, C. M., Skibola, F. and Rappaport S. M., “Benzene, the exposome and future investigations of leukemia etiology”, Chem. Biol. Interact., 192,155 (2011).
    • Mohammadian, Z., Peyrovi, M. H. and Parsafard, N., “Catalytic performance and kinetics study of various carbonaceous supported nickel nanoparticles for atmospheric pressure competitive hydrogenation of benzene”, Phys. Lett., 715, 367 (2019).
    • Mahmoudi, J., Lotfollahi, M. N. and Asl, A. H., “Comparison of synthesized H-Al-MCM-41 with different Si/Al ratios for benzene reduction in gasoline with propylene”, Ind. Eng. Chem., 24, 113 (2015).
    • Peyrovi, M. H., Parsafard, N. and Mohammadian, Z., “Benzene selective hydrogenation over supported Ni (nano-) particles catalysts: Catalytic and kinetics studies”, Chinese J. Chem. Eng., 26, 521 (2018).
    • Li, T., Xia, D., Zhou, G., Xie, H., Jiao, Zh. and Zhang, X., “Effect of the morphology on the vapor phase benzene catalytic hydrogenation over Pd/CeO2 catalyst”, Commun., 112, 350 (2018).
    • Zhang, Q., Yan, X., Zheng, P. and Wang, Z., “Influence factors on activity of Ru–Zn catalysts in selective hydrogenation of benzene”, Chinese J. Chem. Eng., 25, 294 (2017).
    • Piegsa, A., Korth, W., Demir, F. and Jess, A., “Hydrogenation and ring opening of aromatic and naphthenic hydrocarbons over noble metal (Ir, Pt, Rh)/Al2O3 catalysts”, Letters, 142, 531 (2012).
    • Pawelec, B., Castaño, P., Arandes, J. M., Bilbao,, Thomas, S., Peña, M. A. and Fierro, J. L. G., “Factors influencing the thioresistance of nickel catalysts in aromatics hydrogenation”, Appl. Catal. A Gen., 317, 20 (2007).
    • Gao, H., Liu, F., Xue, D., Han, H. and Li, F., “Study on sulfur-tolerant benzene hydrogenation catalyst based on Pt-encapsulated sodalite zeolite”, Kinet. Mech. Catal., 124, 891 (2018).
    • Lin, S. D. and Vannice, M. A., “Hydrogenation of aromatic hydrocarbons over supported Pt catalysts. I. Benzene hydrogenation”, Catal., 143, 539 (1993).
    • Chou, P. and Vannice, M. A., “Benzene hydrogenation over supported and unsupported palladium: I. Kinetic behavior”, Catal., 107, 129 (1987).
    • Mittendorfer, F. and Hafner, J., “Hydrogenation of benzene on Ni(111)A DFT study”, Phys. Chem. B, 106, 13299 (2002).
    • Molina, R. and Poncelet, G., “Hydrogenation of benzene over alumina-supported nickel catalysts prepared from Ni(II) acetylacetonate”, Catal., 199, 162 (2001).
    • Tian, P., Blanchard, J., Fajerwerg Breysse, M., Vrinat, M. and Liu, Zh., “Preparation of Ru metal nanoparticles in mesoporous materials: Influence of sulfur on the hydrogenating activity” Microporous Mesoporous Mater., 60, 197, (2003).
    • Zahmakıran, M., Kodaira, T. and Özkar, S., “Ruthenium(0) nanoclusters stabilized by zeolite framework as superb catalyst for the hydrogenation of neat benzene under mild conditions: Additional studies including cation site occupancy, catalytic activity, lifetime, reusability and poisoning”, Catal. B Environ., 96, 533 (2010).
    • Lu, S., Lonergan, W. W., Zhu, Y., Xie, Y. and Chen, J. G., “Support effect on the low-temperature hydrogenation of benzene over PtCo bimetallic and the corresponding monometallic catalysts”, Catal. B Environ., 91, 610 (2009).
    • Aboul-Fotouh, S. M. K. and Aboul-Gheit A. K., “Effect of hydrohalogenation of PtRe/H-ZSM-5 for cyclohexene conversion”, Chinese J. Catal., 33, 697 (2012).
    • Nandanwar, S. U., Chakraborty, M., Mukhopadhyay, S. and Shenoy, K. T., “Benzene hydrogenation over highly active monodisperse Ru/γ-Al2O3 nanocatalyst synthesized by (w/o) reverse microemulsion”, Kinet. Mech. Catal., 108, 473 (2013).
    • Wang, J., Li, Q. and Yao, J., “The effect of metal–acid balance in Pt-loading dealuminated Y zeolite catalysts on the hydrogenation of benzene”, Catal. A Gen., 184,18 (1999).
    • Ning, J., Xu, J., Liu, J. and Lu, F., “Selective hydrogenation of benzene to cyclohexene over colloidal ruthenium catalyst stabilized by silica”, Letters, 109,175 (2006).
    • Ma, H., Yang, Y., Feng, H. and Cheng, D., “DFT study of pyrolysis gasoline hydrogenation on Pd(100), Pd(110) and Pd(111)”, Surfaces Catal. Letters, 149, 2226 (2019).
    • Li, M., Li, Y., Jia, L. and Wang, Y., “Tuning the selectivity of phenol hydrogenation on Pd/C with acid and basic media”, Commun., 103, 88 (2018).
    • Mironenko, R. M., Belskaya, O. B. and Likholobov, V. A., “Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions”, Today, 357, 152 (2020).
    • Gulyaev, R. V., Slavinskaya, E. M., Novopashin, A., Smovzh, D. V., Zaikovskii, A. V., Osadchii, D.Y., Bulavchenko, O. A., Korenev, S. V. and Boronin, A. I., “Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis”, Appl. Catal. B Environ., 147, 132 (2014).
    • Insorn, P. and Kitiyanan, B., “Selective hydrogenation of mixed C4 containing high vinyl acetylene by Mn-Pd, Ni-Pd and Ag-Pd on Al2O3 catalysts”, Today, 256, 223 (2015).
    • Ferrin, P., Kandoi, S., Nilekar, A. U. and Mavrikakis, M., “Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study”, Sci., 606, 679 (2012).
    • Boudjahem, A. G., Redjel, A. and Mokrane, T., “Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation”, Ind. Eng. Chem., 18, 303 (2012).
    • Domı, O., Quintero, N., Marti, S., Henrı, Y., D’Ornelas, L., Krentzien, H. and Osuna, J., “Silica-supported palladium nanoparticles show remarkable hydrogenation catalytic activity”, Mol. Catal. A Chem., 197, 185 (2003).
    • Zhang, A. M., Dong, J. L., Xu., Q. H., Rhee, H. K. and Li, X. L., “Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation”, Today, 95, 347 (2004).
    • Mashkovsky, I. S., Baeva, G. N., Stakheev, A. Y., Voskoboynikov, V. and Barger, P. T., “Pd/Al2O3 catalyst for selective hydrogenation of benzene in benzene–toluene mixture”, Mendeleev Commun., 19, 108 (2009).
    • Ishii, T., Kitamura, Y., Hasegawa, S., Sasaki and Ozaki, J. I., “Benzene hydrogenation activities of Ni catalyst supported on N- and B-doped carbons”, Diam. Relat. Mater., 119, 108 (2021).
    • Han, W., Liu, B., Chen, Y., Jia, Zh., Wei, X. and Song, W., “Coordinatively unsaturated aluminum anchored Ru cluster for catalytic hydrogenation of benzene”, Catal., 400, 255 (2021).
    • Mazurova, K. M., Nedolivko, V. V., Boev, S. S., Brindukova, E. E., Vinokurov, V. A., Glotov, A. P. and Stavitskaya, A. V., “Influence of the procedure for preparing ruthenium nanoparticles on the internal surface of aluminosilicate nanotubes on their catalytic properties in benzene hydrogenation in the presence of water”, Chem., 61, 676 (2021).
    • He, H., Meyer, R. J., Rioux, R. M. and Janik, M. J., “Catalyst design for selective hydrogenation of benzene to cyclohexene through density functional theory and microkinetic modeling”, ACS Catal., 11, 11831 (2021).
    • Zhan, Y., Zhou, C., Jin, F., Chen, Ch. and Jiang, J., “Ru/TiO2 catalyst for selective hydrogenation of benzene: Effect of surface hydroxyl groups and spillover hydrogen”, Surf. Sci., 525, 146 (2020).
    • Parsafard, N., Peyrovib, M. H. and Abdali Hajiabadi, M., “Nickel, hydrogénation composite catalysts modified by zirconium in competitive benzene hydrogenation: Effect of modifiers”, Chem. Res., 8, 203 (2020).
    • Pérez-Page, M., Makel, J., Guan, K., Zhang, Sh., Tringe, J., Castro, R. H. R. and Stroevea, P., “Gas adsorption properties of ZSM-5 zeolites heated to extreme temperatures”, Int., 42, 15423 (2016).
    • Sedighi, M. and Mohammadi, M., “Application of green novel NiO/ZSM-5 for removal of lead and mercury ions from aqueous solution: Investigation of adsorption parameters”, Water Environ. Nanotechnol., 3, 301 (2018).
    • Ramakrishna, C., Saini, B. K., Racharla, K., Gujarathi, S., Shekar Sridara, Ch., Gupta, A., Thakkallapalli, G. and Rao, P. V. L., “Rapid and complete degradation of sulfur mustard adsorbed on M/zeolite-13X supported (M = 5 wt % Mn, Fe, Co) metal oxide catalysts with ozone”, RSC Adv., 6, 720 (2016).
    • Mohammed, A. H. A. K.,, Hussein, H. Q. and Mohammed, M. S., “The effect of temperature on the synthesis of nano-gamma alumina using hydrothermal method”, Iraqi J. Chem. Pet. Eng., 18, 1 (2017).
    • Gopal, S. and Smirniotis, P. G., “Pt/H-ZSM-12 as a catalyst for the hydroisomerization of C5–C7 n-alkanes and simultaneous saturation of benzene”, Catal. A Gen., 247, 113 (2003).
    • Chen, Z., Sun, H., Peng, Z., Gao, J., Li, B., Liu, Zh. andLiu, Sh., “Selective hydrogenation of benzene: Progress of understanding for the Ru-based catalytic system Ddesign”, Eng. Chem. Res., 58, 13794 (2019).