Optimization of factors affecting on sulfide oxidation from synthetic spent caustic by Haloalkaliphilic Thioalkalivibrio versutus by focus on sodium ion effect: Application of response surface methodology

Document Type: Full article

Authors

1 Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran

2 Environment and Biotechnology Group, Research Institute of Petroleum Industry, P.O. Box 1485733111, Tehran, Iran

Abstract

In the present study, the effects of four factors including initial sulfide concentration (mg l-1 ), agitation speed (rpm), amount of inoculums (%) and sodium concentration (mg l-1) on removal efficiency (%R) and yield of sulfate production by Thioalkalivibrio versutus from synthetic spent caustic were investigated. For this purpose, experiments are designed by design of experiments (DOE) and Response Surface Methodology uses results of experiments to determine relationship between experimental factors and measured responses. The coefficient of determination (R2) was calculated as 0.9012 and 0.9544 for removal efficiency (%R) and yield of sulfate production (Y_(SO4/S)), respectively. The best local maximum was found to be at initial sulfide concentration 1500 mg/l, agitation speed 180 rpm, inoculum 8%, Na concentration 1.38 M , removal efficiency 96.99%, yield of sulfate production 2.65 and desirability of 0.909. According to these observations and results Thioalkalivibrio versutus is a suitable bacterium for oxidation of sulfide in spent caustic wastewater.

Keywords

Main Subjects


[1]   Park, J. J., Byun, I. G., Park, S. R., Lee, J. H., Park, S. H, Park, T. J. and Lee, T. H., “Use of spent sulfidic caustic for autotrophic denitrification in the biological nitrogen removal processes: Lab-scale and pilot-scale experiments”, J. Ind. Eng. Chem., 15, 316 (2009).

[2]   Alnaizy, R., “Economic analysis for wet oxidation processes for the treatment of mixed refinery spent caustic”, Environ. Prog., 27 (3), 295 (2008).

[3]   Veerabhadraiah, G., Mallika, N. and Jindal, S., “Spent caustic management: Remediation review”, Hydrocarb. Process., 90 (11), 1 (2011).

[4]   Conner, J. A., Beitle, R. R., Duncan, K., Kolhatkar, R. and Sublette, K. L., “Biotreatment of refinery spent-sulfidic caustic using an enrichment culture immobilized in a novel support matrix”, Appl. Biochem. Biotech., A: Enzyme Engineering and Biotechnology, 84, 707 (2000).

[5]   Potumarthi, R., Mugeraya, G. and Jetty, A., “Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01”, Appl. Biochem. Biotechnol., 151, 532 (2008).

[6]   Maugans, C. and Huaman, F., “Disposal of spent caustic at the Repsol YPF refinery in La Pampilla, Peru”, Environmental Conference, Austin, USA (2007).

[7]   Sheu, S. H. and Weng, H. S., “Treatment of olefin plant spent caustic by combination of neutralization and Fenton reaction”, Water Res., 35, 2017 (2001).

[8]    Reeder, L. R., Cobs, J. H., Field, J. W., Finley, W. D., Vokurka, S. C. and Rolfe, B. N., “Review and assessment of deep-well injection of hazardous waste”, C. C. Wiles, Environmental protection agency (EPA): Cincinettiti, (1977).

[9]   Grover, R. and Gomaa, H. M., “Proven technologies manage olefin plant’s spent caustic”, Hydrocarb. Process., 72 (9), 61 (1993).

[10]           Ellis, C. E., “Wet air oxidation of refinery spent caustic”, Environ. Progress., 17 (1), 28 (1998).

[11] Claude, E. E., Robert, J. L. and Bruce, L. B., “Wet air oxidation of ethylene plant spent caustic”, American Institute of Chemical Engineers 6th Annual Ethylene Producers Conference, Annual Meeting, Atlanta, Georgia, USA (1994).

[12] Graaff, M. D., Bijmans, M. F. M., Abbas, B., Euverink, G. J. W., Muyzer, G. and Janssen, A. J. H., “Biological treatment of refinery spent caustics under halo-alkaline conditions”, Bioresource Technol., 102, 7257 (2011).

[13]           Metcalf, E. and Eddy, H. P., Wastewater engineering: Treatment, disposal, and reuse”, McGraw-Hill, New York, USA (1991).

[14] Sorokin, D. Y., Lysenko, A. M., Mityushina, L. L., Tourova, T. P., Jones, B. E., Rainey, F. A., Robertson, L. A. and Kuenen, J. G., “Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes”, Int. J. Syst. Evol. Micr., 51, 565 (2001).

[15] Sorokin, D. Y, Tourova, T. P., Kuznetsov, B., Bryantseva, I. and Gorlenko, V., “Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a soda lake”, Microbiology, 69 (1), 75 (2000).

[16]           Sorokin, D. Y. and Kuenen, J. G., “Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes”, FEMS Microbiol. Rev., 29 (4), 685 (2005).

[17] Sorokin, D. Y., Kuenen, J. G. and Muyzer, G., “The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes”, Front. in Microbiol., 2, 1 (2011).

[18] Muyzer, G., Sorokin, D. Y., Mavromatis, K., Lapidus, A., Clum, A., Ivanova, N., Pati, A., d'Haeseleer, P., Woyke, T. and Kyrpides, N. C., “Complete genome sequence of Thioalkalivibrio sulfidophilus HL-EbGr7”, Stand. Genomic Sci., 4 (1), 23 (2011).

[19]        Muyzer, G., Sorokin, D. Y., Mavromatis, K., Lapidus, A., Foster, B., Sun, H., Ivanova,N., Pati,A., D'haeseleer,P., Woyke,T. and Kyrpides, N. C., “Complete genome sequence of Thioalkalivibrio sp. K90mix”, Stand. Genomic Sci., 5 (3), 341 (2011).

[20]           Foti, M., Ma, S., Sorokin, D. Y., Rademaker, J. L. W., Kuenen, J. G. and Muyzer, G., “Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio”, FEMS Microbiol. Ecol., 56, 95 (2006).

[21] Klok, J. B. M., van den Bosch, P. L. F., Buisman, C. J. N., Stams, A. J. M., Keesman, K. J. and Janssen, A. J. H., “Pathways of sulfide oxidation by haloalkaliphilic bacteria in limited-oxygen gas lift bioreactors”, Environ. Sci. Technol., 46 (14), 7581 (2012).

[22] Krowiak, A. W., Chojnacka, K., Podstawczyk, D., Dawiec, A. and Pokomed, K., “Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process”, Bioresource Technol., 160, 150 (2014).

[23] APHA, 20th ed., American Public Health Association, Washington D. C., USA, (1998).

[24] Sorokin, D. Y., Tourova, T. P., Lysenko, A. M. and Muyzer, G., “Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats”, Microbiology, 152, 3013 (2006).

[25] Banciu, H., Sorokin, D. Y., Kleerebezem, R., Muyzer, G., Galinski, E. A. and Kuenen, J. G., “Growth kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture”, Extremophiles, 8, 185 (2004).

[26] Amini, M. and Younesi, H., “Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: Application of response surface methodology to the optimization of process parameters”, Clean, 37 (10), 776 (2009).