Fabrication and characterization of polycarbonate/titanium oxide nanotubes mixed matrix membranes for efficient removal of cadmium and copper from aqueous solution

Document Type: Full article

Authors

1 Advanced Membrane and Biotechnology Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

2 Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

In this study, novel polycarbonate-titanium oxide nanotubes (PC-TNT) ultrafiltration mixed matrix membranes (MMMs) were fabricated for decontamination of Cd2+ and Cu2+ metal ions from aqueous solution. The weight percent of TNTs in the polycarbonate membrane matrix was changed from 0 to 15. The synthesized neat PC membrane and PC-TNTs MMMs were characterized with respect to structural morphology and hydrophilicity using scanning electron microscopy (SEM) and water contact angle, respectively. The effects of TNTs loadings on the pure water flux, mean pore size, porosity and water contact angle of fabricated membranes and Cd2+ and Cu2+ heavy metal ion rejection were also studied. By increasing the loading of TNTs nanoparticles in the membrane matrix, the membrane mean pore size tended to increase, while the porosity decreased. Also, the increase in TNTs loading resulted in an increase in membrane water flux which was mainly attributable to the enhancement in mean pore size and partly caused by the decreased contact angle value (more hydrophilic). Of all the membranes studied, it was found by UF experiments that PC-TNT MMM was the most efficient material in heavy metal ions removal due to the superior adsorption capacity of TNTs material. The generic results revealed that TNTs material can be favorite candidates for MMMs preparation in order to be conveniently used in the Cd2+ and Cu2+ heavy metal ions decontamination from polluted water resources.

Keywords


[1]      Yin, P., Xu, M., Liu, W., Qu, R., Liu X. and Xu, Q., “High efficient adsorption of gold ions onto the novel functional composite silica microspheres encapsulated by organophosphonated polystyrene”, J. Ind. Eng. Chem., 20, 379 (2014).

[2]      Jamil, M., Zia, M. S. and Qasim, M., “Contamination of agro-ecosystem and human health hazards from wastewater used for irrigation”, J. Chem. Soc. Pak., 32, 370 (2010).

[3]      Singh, A., Sharma, R. K., Agrawal, M. and Marshall, F. M., “Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India”, Food Chem. Toxicol., 48, 611 (2010).

[4]      Fu, F. L. and Wang, Q., “Removal of heavy metal ions from wastewaters: A review”, J. Environ. Manage., 92, 407 (2011).

[5]      O’Connell, D. W., Birkinshaw, C. and O’Dwyer, T. F., “Heavy metal adsorbents prepared from the modification of cellulose: A review”, Bioresour. Technol., 99, 6709 (2008).

[6]      Qdais, H. A. and Moussa, H., “Removal of heavy metals from wastewater by membrane processes: A comparative study”, Desalination, 164,105 (2004).

[7]      Oh, J. I., Lee, S. H. and Yamamoto, K., “Relationship between molar volume and rejection of arsenic species in groundwater by low-pressure nanofiltration process”, J. Membr. Sci.,234, 167 (2004).

[8]      Chan, B. K. C. and Dudeney, A. W. L., “Reverse osmosis removal of arsenic residues from bioleaching of refractory gold concentrates”, Miner. Eng., 21, 272 (2008).

[9]      Fu, F. and Wang, Q., “Removal of heavy metal ions from wastewaters: A review”, J. Environ. Manage., 92, 407 (2011).

[10]  Fatin-Rouge, N., Dupont, A., Vidonne, A., Dejeu, J., Fievet, P. and Foissy, A., “Removal of some divalent cations from water by membrane-filtration assisted with alginate”, Water Res., 40, 1303 (2006).

[11]  Abbas, M., Kaddour, S. and Trari, M., “Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon”, J. Ind. Eng. Chem., 20, 745 (2014).

[12]  Roh, H., Yu, M. R., Yakkala, K., Koduru, J. R., Yang, J. K. and Chang, Y. Y., “Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads”, J. Ind. Eng. Chem., 26, 226 (2015).

[13]  Koduru, J. R., Chamg, Y. Y. and Kim, I. S., “Low-Cost Schizandra chinesis fruit peel for Co(II) removal from aqueous environment: Adsorption properties and mechanism”, Asian J. Chem., 26, 289 (2014).

[14]  Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. and Zhang, Q., “Heavy metal removal from water/wastewater by nanosized metal oxides: A review”, J. Hazard. Mater., 211- 212, 317 (2012).

[15]  Wang, L., Li, J., Jiang, Q. and Zhao, L., “Water soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water”, Dalton. Trans., 41, 4544 (2012).

[16]  Feng, L., Cao, M., Ma, X., Zhu, Y. and Hu, C., “Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal”, J. Hazard. Mater., 217-218, 439 (2012).

[17]  Srivastava, V., Weng, C. H., Singh, V. K. and Sharma, Y. C., “Adsorption of Nickel Ions from aqueous solutions by nano alumina: Kinetic, mass transfer, and equilibrium studies”, J. Chem. Eng. Data., 56, 1414 (2011).

[18]  Parida, K., Mishra, K. G. and Dash, S. K., “Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: Equilibrium and kinetic studies”, J. Hazard. Mater., 241- 242, 395 (2012).

[19]  Visa, M., Carcel, R. A., Andronic, L. and Duta, A., “Advanced treatment of wastewater with methyl orange and heavy metals on TiO2, fly ash and their mixtures”, Catal. Today, 144, 137 (2009).

[20]  Wang, X., Cai, W., Liua, S., Wang, G., Wu, Z. and Zhao, H., “ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions”, Colloids Surf. A: Physicochem. Eng. Aspects, 422, 199 (2013).

[21]  Singh, S., Barick, K. C. and Bahadur, D., “Novel and efficient three dimensional mesoporous ZnO nanoassemblies for environmental remediation”, Int. J. Nanosci., 10, 1001 (2011).

[22]  Xie, K., Guo, M., Huang, H. and Liu, Y., “Fabrication of iron oxide nanotube arrays by electrochemical anodization”, Corros. Sci., 88, 66 (2014).

[23]  Mohapatra, S. K., Misra, M., Mahajan, V. K. and Raja, K. S., “A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water”, J. Catal., 246, 362 (2007).

[24]  Khan, M. A., Jung, H. T. and Yang, O. B., “Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes”, J. Phys. Chem. B., 110, 6626 (2006).

[25]  Samarghandi, M. R., Nouri, J., Mesdaghinia, A. R., Mahvi, A. H., Nasseri, S. and Vaezi, F., “Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes”, Int. J. Environ. Sci. Tech., 4, 19 (2007).

[26]  Liang, H. and Li, X., “Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2, 3-dichlorophenol in aqueous solution”, J. Hazard. Mat., 162, 1415 (2009).

[27]  Li, Z., Jiang, W. T., Jean, J. S., Hong, H., Liao, L. and Lv, G., “Combination of hydrous iron oxide precipitation with zeolite filtration to remove arsenic from contaminated water”, Desalination, 280, 203 (2011).

[28]  Guo, X., Du, Y., Chen, F., Park, H. S. and Xie, Y., “Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (b-FeOOH): EXAFS study”, J. Colloid Interface Sci., 314, 427 (2007).

[29]  Pan, B., Pan, B., Zhang, W., Lv, L., Zhang, Q. and Zheng, S., “Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters”, Chem. Eng. J., 151, 19 (2009).

[30]  Wang, J., Zhang, S., Pan, B., Zhang, W. and Lv, L., “Hydrous ferric oxide–resin nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure”, J. Hazard. Mater., 198, 241 (2011).

[31]  Ghaemi, N., Madaeni, S. S., Daraei, P., Rajabi, H., Zinadini, S., Alizadeh, A., Heydari, Beygzadeh, M. and Ghouzivand, S., “Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe3O4 nanoparticles”,Chem. Eng. J., 263, 101 (2015).

[32]  Nayak, V., Jyothi, M. S., Balakrishna, R. G., Padaki, M. and Ismail, A. F., “Preparation and characterization of chitosan thin films on mixed-matrix membranes for complete removal of chromium”, ChemistryOpen, 4, 278 (2015).

[33]  Jamshidi Gohari, R., Lau, W. J., Matsuura, T. and Ismail, A. F., “Fabrication and characterization of novel PES/Fe–Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(III) from contaminated water solution”, Sep. Purif. Technol., 118, 64 (2013).

[34]  Mukherjee, R., Bhunia, P. and De, S., “Impact of graphene oxide on removal of heavy metals using mixed matrix membrane”,Chem. Eng. J., 292, 284 (2016).

[35]  Lee, S. K. and Choi, H. S., “Spectrophotometric determination of cadmium and copper with ammonium pyrrolidinedithiocarbamate in nonionic Tween 80 micellar media”, Bull. Korean Chem. Soc., 22, 463 (2001).

[36]  Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., “Formation of titanium oxide nanotube”, Langmuir, 14, 3160 (1998).

[37]  Aroon, M. A., Ismail, A. F., Matsuura, T. and Montazer-Rahmati, M. M., “Performance studies of mixed matrix membranes for gas separation: A review”, Sep. Purif. Technol., 75, 229 (2010).

[38]  Amini, M., Jahanshahi, M. and Rahimpour, A., “Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes”, J. Membr. Sci., 435, 233 (2013).

[39]  Li, J. F., Xu, Z. L., Yang, H., Yu, L. Y. and Liu, M., “Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane”, Appl. Surf. Sci., 255, 4725 (2009).

[40]  Bakeri, Gh., Ismail, A. F., Rezaei Dasht Arzhandi, M. and Matsuura, T., “Porous PES and PEI hollow fiber membranes in a gas–liquid contacting, process: A comparative study”, J. Membr. Sci.,475, 57 (2015).

[41]  Ren, J., Zhou, J. and Deng, M., “Morphology transition of asymmetric polyetherimide flat sheet membranes with different thickness by wet phase-inversion process”, Sep. Purif. Technol., 74, 119 (2010).

[42]  Vandezande, P., Li, X., Gevers, L. and Vankelecom, I., “High throughput study of phase inversion parameters for polyimide-based SRNF membranes”, J. Membr. Sci., 330, 307 (2009).

[43]  Gholami, A., Moghadassi, A. R., Hosseini, S. M., Shabani, S. and Gholami, F., “Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water”, J. Ind. Eng. Chem., 20, 1517 (2014).

[44]  Daraei, P., Madaeni, S. S., Ghaemi, N., Salehi, E., Khadivi, M. A., Moradian, R. and Astinchap, B., “Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water”, J. Membr. Sci., 415–416, 250 (2012).

[45]  Teow, Y. H., Ahmad, A. L., Lim, J. K. and Ooi, B. S., “Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method”, Desalination, 295, 61 (2012).

[46]  Kim, I. C. and Lee, K. H., “Effect of various additives on pore size of polysulfone membrane by phase-inversion process”, J. Appl. Polym. Sci., 89, 2562 (2003).

[47]  Razmjou, A., Resosudarmo, A., Holmes, R., Li, H., Mansouri, J. and Chen, V., “The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes”, Desalination, 287, 271 (2012).

[48]  Bestetti, M., Franz, S., Cuzzolin, M., Arosio, P. and Cavallotti, P. L., “Structure of nanotubular titaniumoxide templates prepared by electrochemical anodization in H2SO4/HF solutions”, Thin Solid Films, 515, 5253 (2007).

[49]  Liu, Q., Wu, X., Wang, B. and Liu, Q., “Preparation and super-hydrophilic properties of TiO2/SnO2 composite thin films”, Mater. Res. Bull., 37, 2255 (2002).

[50]  Munirathinam, B. and Neelakantan, L., “Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties”, Mater. Sci. Eng., C, 49, 567 (2015).