Interior Modification of Nano-Porous Fillers to Fabricate High Performance Mixed Matrix Membranes

Document Type: Full article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran

2 Department of Chemical Engineering, Arak University

3 Amirkabir University of Technology

4 Tarbiat Modares University

5 Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Malaysia

6 Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, 117576, Singapore

Abstract

A new method is developed to enhance the gas separation properties of mixed matrix membranes (MMMs) by interior modification of an inorganic nano-porous particle. Ship-in-a-bottle (SIB), as a novel synthesis strategy, is considered to encapsulate a polyaza macrocyclic Ag-ligand complex into the zeolite Y, which is resulted in a new host-guest nano-composite. It is consequently incorporated into a glassy polymer matrix to fabricate a novel MMM for CO2 separation. Accordingly, cellulose acetate (CA) with relatively low gas permeability is selected as the membrane polymeric matrix to provide an appropriate opportunity for better tracking the effect of incorporating the new synthesized nano-porous hybrids. The results showed a promising increase in both the CO2 permeability (45.71%) and CO2/N2 selectivity (40.28%) of the prepared MMM over its pristine CA membrane. It can be concluded that the proposed method makes it possible to fabricate novel MMMs with significant intensification in performance of the current MMMs.

Keywords

Main Subjects


[1]      Forster, P. M. and Cheetham, A. K., “Hybrid inorganic-organic solids: An emerging class of nanoporous catalysts”, Top. Catal., 24, 79 (2003).

[2]      Ebadi Amooghin, A., Mashhadikhan, S., Sanaeepur, H. R., Moghadassi, A., Matsuura, T. and Ramakrishna, S., “Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation”, Prog. Mater. Sci., 102, 222 (2019).

[3]      Sanaeepur, H. R., Ahmadi, R., Ebadi Amooghin, A. and Ghanbari, D., “A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax 1657)/copper nanoparticles for CO2 separation”, J. Membr. Sci., 573, 234 (2019).

[4]      Herron, N., Stucky, G. D. and Tolman, C. A., “The reactivity of tetracarbonylnickel encapsulated in zeolite X: A case history of intrazeolite coordination chemistry”, Inorg. Chim. Acta, 100, 135 (1985).

[5]      Kahlen, W., Wagner, H. H. and Holderich, W. F., “Zeolite effect in the enantioselective transhydrogenation over a Co-salen "ship-in-the-bottle" complex”, Catal. Lett., 54, 85 (1998).

[6]      Herron, N., “A cobalt oxygen carrier in zeolite Y: A molecular "ship in a bottle"”, Inorg. Chem., 25, 4714 (1986).

[7]      Jia, Y., Shmakov, S. N., Register, P. and Pinkhassik, E., “Size-selective yolk-shell nanoreactors with nanometer-thin porous polymer shells”, Chem. Eur. J., 21, 12709 (2015).

[8]      Peng, J., Lan, G., Guo, M., Wei, X., Li, C. and Yang, Q., “Fabrication of efficient hydrogenation nanoreactors by modifying the freedom of ultrasmall platinum nanoparticles within yolk-shell nanospheres”, Chem. Eng. J., 21, 10490 (2015).

[9]      Wu, C. D. and Zhao, M., “Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis”, Adv. Mater., 29, 1605446 (2017).

[10]  Corma, A. and Garcia, H., “Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis”, Eur. J. Inorg. Chem., 6, 1143 (2004).

[11]  Liu, J., Qiao, S.Z., Chen, J. S., Lou, X. W. D., Xing, X. and Lu, G. Q. M., “Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries”, Chem. Commun., 47, 12578 (2011).

[12]  Fujie, K. and Kitagawa, H., “Ionic liquid transported into metal-organic frameworks”, Coord. Chem. Rev., 307, 382 (2016).

[13]  Gkaniatsou, E., Sicard, C., Ricoux, R., Mahy, J. -P., Steunou, N. and Serre, C., “Metal-organic frameworks: A novel host platform for enzymatic catalysis and detection”, Mater. Horiz., 4, 55 (2017).

[14]  Matsuda, R. K., Kitagawa, R., Kubota, S., Belosludov, Y., Kobayashi, R. V., Sakamoto, T. C., Chiba, H., Takata, T., Kawazoe, M. and Mita, Y., “Highly controlled acetylene accommodation in a metal-organic microporous material”, Nature, 436, 238 (2005).

[15]  Seki, K., “Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes”, Chem. Commun., 1496 (2001).

[16]  Caro, J., “Are MOF membranes better in gas separation than those made of zeolites?”, Curr. Opin. Chem. Eng., 1, 77 (2011).

[17]  Zhang, Y., Musselman, I. H., Ferraris, J. P. and Balkus, K. J., “Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS”, J. Membr. Sci., 313, 170 (2008).

[18]  Zornoza, B., Tellez, C., Coronas, J., Gascon, J. and Kapteijn, F., “Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential”, Micropor. Mesopor. Mat., 166, 67 (2012).

[19]  Ebadi Amooghin, A., Sanaeepur, H. R., Zamani Pedram, M., Omidkhah, M. R. and Kargari, A., “New advances in polymeric membranes for CO2 separation”, Polymer science: Research advances, practical applications and educational aspects, Méndez-Vilas, A. and Solano-Martín, A. Eds., Formatex Research Center, Badajoz, Spain, p. 354 (2016).

[20]  Adams, R., Carson, C., Ward, J., Tannenbaum, R. and Koros, W., “Metal organic framework mixed matrix membranes for gas separations”, Micropor. Mesopor. Mat., 131, 13 (2010).

[21]  Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Fauzi Ismail, A. and Matsuura, T., “State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions”, Prog. Polym. Sci., 39, 817 (2014).

[22]  Ferrey, G. and Serre, C., “Large breathing effects in three-dimentional porous hybrid matter: Facts, analyses, rules and consequences”, Chem. Soc. Rev., 38, 1380 (2009).

[23]  Li, K., Olson, D. H., Seidel, J., Emge, T. J., Gong, H., Zeng, H. and Li, J., “Zeolitic imidazolate frameworks for kinetic separation of propane and propene”, J. Am. Chem. Soc., 131, 10368 (2009).

[24]  Li, S., Falconer, J. L. and Noble, R. D., “Improved SAPO-34 membranes for CO2/CH4 separations”, Adv. Mater., 18, 2601 (2006).

[25]  Koros, W. J. and Zhang, C., “Materials for next-generation molecularly selective synthetic membranes”, Nat. Mater., 16, 289 (2017).

[26]  Huang, L., Wang, H., Chen, J., Wang, Z., Sun, J., Zhao, D. and Yan, Y., “Synthesis, morphology control, and properties of porous metal-organic coordination polymers”, Micropor. Mesopor. Mat., 58, 105 (2003).

[27]  Hess, S. C., Grass, R. N. and Stark, W. J., “MOF channels within porous polymer film: Flexible, self-supporting ZIF‑8 poly(ether sulfone) composite membrane”, Chem. Mater., 28, 7638 (2016).

[28]  Sanaeepur, H. R., “Tailoring "ship in a bottle" synthesized metal-organic nanoporous hybrid materials embedded in a mixed matrix membrane for CO2 separation”, Petrochemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Mahshahr Campus, Mahshahr, Iran, (2015).

[29]  Hosseinkhani, O., Kargari, A. and Sanaeepur, H. R., “Facilitated transport of CO2 through Co(II)-S-EPDM ionomer membrane”, J. Membr. Sci., 469, 151 (2014).

[30]  Ebadi Amooghin, A., Omidkhah, M. R. and Kargari, A., “The effects of aminosilane grafting on NaY zeolite-Matrimid®5218 mixed matrix membranes for CO2/CH4 separation”, J. Membr. Sci., 490, 364 (2015).

[31]  Khalilinejad, I., Sanaeepur, H. R. and Kargari, A., “Preparation of poly(ether-6-block amide)/PVC thin film composite membrane for CO2 separation: effect of top layer thickness and operating parameters, J. Membr.”, Sci. Res., 1, 124 (2015).

[32]  Matteucci, S. Yampolskii, Y., Freeman, B. D. and Pinnau, I., “Transport of gases and vapors in glassy and rubbery polymers”, Materials science of membranes for gas and vapor separation, Yampolskii, Y., Pinnau, I., Freeman, B. D. Eds., John Wiley & Sons Ltd., West Sussex, United Kingdom, p. 1 (2006).

[33]  Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J., Diniz da Costa, J. C. and May, E. F., “The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies”, J. Petrol. Sci. Eng., 94-95, 123 (2012).

[34]  Kim, S., Marand, E., Ida, J. and Guliants, V. V., “Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation”, Chem. Mater., 18, 1149 (2006).

[35]  Kargari, A. and Sanaeepur, H. R., “Application of membrane gas separation processes in petroleum industry”, Advances in petroleum engineering, Sinha, S., Pant, K. K. Eds., Studium Press LLC, Houston, USA, p. 592 (2015).

[36]  Sanaeepur, H. R., Kargari, A. and Nasernejad, B., “Aminosilane-functionalization of a nanoporous Y-type zeolite for application in a cellulose acetate based mixed matrix membrane for CO2 separation”, RSC Adv., 4, 63966 (2014).

[37]  Sanaeepur, H. R., Kargari, A., Nasernejad, B., Ebadi Amooghin, A. and Omidkhah, M. R., “A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation”, J. Taiwan Inst. Chem. Eng., 60, 403 (2016).

[38]  Ebadi Amooghin, A., Omidkhah, M. R., Sanaeepur, H. R. and Kargari, A., “Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid®5218 mixed matrix membrane for CO2/CH4 separation”, J. Energy Chem., 25, 450 (2016).

[39]  Sanaeepur, H. R., Nasernejad, B. and Kargari, A., “Cellulose acetate/nano-porous zeolite mixed matrix membrane for CO2 separation”, Greenh. Gases Sci. Technol., 5, 291 (2015).

[40]  Ebadi Amooghin, A., Sanaeepur, H. R., Omidkhah, M. R. and Kargari, A., “"Ship-in-a-bottle", a new synthesis strategy for preparing novel hybrid host-guest nanocomposites for highly selective membrane gas separation”, J. Mater. Chem. A., 6, 1751 (2018).

[41]  Houde, A. Y., Krishnakumar, B., Charati, S. G. and Stern, S. A., “Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures”, J. Appl. Polym. Sci., 62, 2181 (1996).

[42]  Bos, A., Pünt, I. G. M., Wessling, M. and Strathmann, H., “CO2-induced plasticization phenomena in glassy polymers”, J. Membr. Sci., 155, 67 (1999).

[43]  Vinit, J., Noel, C. and Monnerie, L., “Physicochemical processes occurring during the formation of cellulose diacetate membranes, research of criteria for optimizing membrane performance, II: influence of cellulose diacetate chain hydrogen on the effect of heat transfer”, Desalination, 15, 267 (1974).

[44]  Khalilinejad, I., Kargari, A. and Sanaeepur, H. R., “Preparation and characterization of (Pebax 1657+silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation”, Chem. Pap., 71, 803 (2017).

[45]  Ebadi Amooghin, A., Sanaeepur, H. R., Kargari, A. and Moghadassi, A., “Direct determination of concentration-dependent diffusion coefficient in polymeric membranes based on the Frisch method”, Sep. Purif. Technol., 82, 102 (2011).

[46]  Sanaeepur, H. R., Ebadi Amooghin, A., Moghadassi, A., Kargari, A., Moradi, S. and Ghanbari, D., “A novel acrylonitrile-butadiene-styrene/poly(ethylene glycol) membrane: preparation, characterization, and gas permeation study”, Polym. Adv. Technol., 23, 1207 (2012).

[47]  Sanaeepur, H. R., Ebadi Amooghin, A., Moghadassi, A. and Kargari, A., “Preparation and characterization of acrylonitrile–butadiene–styrene/

poly(vinyl acetate) membrane for CO2 removal”, Sep. Purif. Technol., 80, 499 (2011).

[48]  Ebadi Amooghin, A., Omidkhah, M. R. and Kargari, A., “Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix”, RSC Adv., 5, 8552 (2015).

[49]  García, A., López, C. M., García, L. V., Casanova, J. and Goldwasser, M. R., “Improvements in the synthesis of zeolites with low Si/Al ratio from Venezuelan sodium silicate, for an environmentally friendly process”, Ing. Invest., 36, 62 (2016).

[50]  Flanigen, E. M., Broach, R. W. and Wilson, S. T., “Introduction”, Zeolites in industrial separation and catalysis, Kulprathipanja, S. Ed., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, , p. 1 (2010).

[51]  Sohn, J. R., DeCanio, S. J., Lunsford, J. H. and O'Donnell, D. J., “Determination of framework aluminium content in dealuminated Y-type zeolites: A comparison based on unit cell size and wavenumber of i.r. bands”, Zeolites, 6, 225 (1986).

[52]  Song, H., Jiang, B. -L., Song, H. -L. Jin, Z. -S. and Sun, X. -L., “Preparation of AgY zeolite and study on its adsorption equilibrium and kinetics”, Res. Chem. Intermed., 41, 3837 (2015).

[53]  Góra-Marek, K., Tarach, K. A., Piwowarska, Z., Łaniecki, M. and Chmielarz, L., “Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation”, Catal. Sci. Technol., 6, 1651 (2016).

[54]  Lari, G. M., Puértolas, B., Frei, M. S., Mondelli, C. and Pérez‐Ramírez, J., “Hierarchical NaY zeolites for lactic acid dehydration to acrylic acid”, Chem. Cat. Chem., 8, 1507 (2016).

[55]  Lemos, S. S., Deflon, V. M., Bessler, K. E. and Abbott, M. P., “Mononuclear and mixed-metal copper(I)-silver(I) complexes containing 2,2′-bibenzimidazole and triphenylphosphane as ligands: Crystal structures of [Cu(tmbbimH2)(PPh3)2](MeCOO).0.2C7H8 and [Ag0.55Cu1.45(μ-bbim)(PPh3)4].4CH2Cl2”, Transit. Metal Chem., 29, 46 (2004).

[56]  Johan, E., Yamauchi, Y., Matsue, N., Itagaki, Y. and Hiromichi, A., “Preparation of rare-earth-free luminescent material from partially Ag+-exchanged zeolite X”, J. Ceram Soc. JPN, 124, 70 (2016).

[57]  Kolobova, E., Pestryakov, A., Shemeryankina, A., Kotolevich, Y., Martynyuk, O., Tiznado Vazquez, H. J. and Bogdanchikova, N., “Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation”, Fuel, 138, 65 (2014).

[58]  Kolobova, E., Pestryakov, A., Mamontov, G., Kotolevich, Y., Bogdanchikova, N., Farias, M., Vosmerikov, A., Vosmerikova, L. and Cortes Corberan, V., “Low-temperature CO oxidation on Ag/ZSM-5 catalysts: Influence of Si/Al ratio and redox pretreatments on formation of silver active sites”, Fuel, 188, 121 (2017).

[59]  Zaarour, M., El Roz, M., Dong, B., Retoux, R., Aad, R., Cardin, J., Dufour, C., Gourbilleau, F., Gilson, J. -P. and Mintova, S., “Photochemical preparation of silver nanoparticles supported on zeolite crystals”, Langmuir, 30, 6250 (2014).

[60]  Popovych, N., Kyriienko, P., Soloviev, S., Baran, R., Millotc, Y. and Dzwigaj, S., “Identification of the silver state in the framework of Ag-containing zeolite by XRD, FTIR, photoluminescence, 109Ag NMR, EPR, DR UV-vis, TEM and XPS investigations”, Phys. Chem. Chem. Phys., 18, 29458 (2016).

[61]  Coutino-Gonzalez, E., Roeffaers, M. B. J., Dieu, B., De Cremer, G., Leyre, S., Hanselaer, P., Fyen, W., Sels, B. and Hofkens, J., “Determination and optimization of the luminescence external quantum efficiency of silver-clusters zeolite composites”, J. phys. Chem. C., 117, 6998 (2013).

[62]  Gachard, E., Belloni, J. and Subramanian, M. A., “Optical and EPR spectroscopic studies of silver clusters in Ag,Na-Y zeolite by y-irradiation”, J. Mater. Chem., 6, 867 (1996).

[63]  Schoonheydt, R. A. and Leeman, H., “Formation of the Ag6x+ cluster in zeolite A.”, J. Phys. Chem., 93, 2048 (1989).

[64]  Gurin, V. S., Bogdanchikova, N. E. and Petranovskii, V. P., “Self-assembling of silver and copper small clusters within the zeolite cavities: Prediction of geometry”, Mat. Sci. Eng. C., 18, 37 (2001).

[65]  Salavati-Niasari, M., Ganjali, M. R. and Norouzi, P., “Host (nanocavity of zeolite Y)/guest (Co(II), Ni(II) and Cu(II) complexes of unsaturated 16-membered octaaza; 3,4,11,12-tetramethyl-1,2,5,6,9,10,13,14-octaazacyclohexadecane; Me4[16]aneN8 nanocomposite materials (HGNM): Template synthesis, characterization and catalytic oxidation of benzyl alcohol”, Transit. Metal Chem., 32, 1 (2007).

[66]  Salavati-Niasari, M. and Bazarganipour, M., “Host (nanodimensional pores of zeolite Y)–guest (tetraaza[14]annulene nickel(II) complexes, [Ni(Me4R2Bzo[14]tetraeneN4)]) nanocomposite materials: "Ship-in-a-bottle" synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide”, Catal. Commun., 7, 336 (2006).

[67]  Ichikawa, M., Kimura, T. and Fukuoka, A., “"Ship-in-a-bottle" synthesis of sterically crowded Fe-phthalocyanines in NaY zeolite hosts and their catalytic behavior in regioselective oxidation of alkanes”, Stud. Surf. Sci. Catal., 60, 335 (1991).

[68]  Li, J. -H., Chi, Z. -Q. and Chen, H. -F., “Synthesis of NaY zeolite molecular sieves from calcined diatomite”, Adv. Mater. Res., 236-238, 362 (2011).

[69]  Kariduraganavar, M. Y., Kittur, A. A., Kulkarni, S. S. and Ramesh, K., “Development of novel pervaporation membranes for the separation of water-isopropanol mixtures using sodium alginate and NaY zeolite”, J. Membr. Sci., 238, 165 (2004).

[70]  Noiroj, K., Intarapong, P., Luengnaruemitchai, A. and Jai-In, S., “A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil”, Renew. Energ., 34, 1145 (2009).

[71]  Oliveira, M. L. M., Miranda, A. A. L., Barbosa, C. M. B. M., Cavalcante, C. L., Azevedo, D. C. S. and Rodriguez-Castellon, E., “Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag(I), Ni(II) and Zn(II)”, Fuel, 88, 1885 (2009).

[72]  Salavati-Niasari, M., Salimi, Z., Bazarganipour, M. and Davar, F., “Synthesis, characterization and catalytic oxidation of cyclohexane using a novel host (zeolite-Y)/guest (binuclear transition metal complexes) nanocomposite materials”, Inorg. Chem. Acta, 362, 3715 (2009).

[73]  Golubeva, O. Y., Ternovaya, N. Y., Maltseva, N. V. and Meyerstein, D., “Catalytic hydrogen oxidation using zeolite RHO modified by silver nanoparticles”, Glass Phys. Chem., 38, 455 (2012).

[74]  Zhou, T., Luo, L., Hu, S., Wang, S., Zhang, R., Wu, H., Jiang, Z., Wang, B. and Yang, J., “Janus composite nanoparticle-incorporated mixed matrix membranes for CO2 separation”, J. Membr. Sci., 489, 1 (2015).

[75]  Manna, A., Imae, T., Iida, M. and Hisamatsu, N., “Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex”, Langmuir, 17, 6000 (2001).

[76]  Rindfleisch, F., DiNoia, T. P. and McHugh, M. A., “Solubility of polymers and copolymers in supercritical CO2”, J. Phys. Chem., 100, 15581 (1996).

[77]  Ebadi Amooghin, A., Sanaeepur, H. R., Moghadassi, A., Kargari, A., Ghanbari, D. and Sheikhi Mehrabadi, Z., “Modification of ABS membrane by PEG for capturing carbon dioxide from CO2/N2 streams”, Sep. Sci. Technol., 45, 1385 (2010).

[78]  Zamiri, M. A., Kargari, A. and Sanaeepur, H. R., “Ethylene vinyl acetate/poly(ethylene glycol) blend membranes for CO2/N2 separation”, Greenh. Gases Sci. Technol., 5, 668 (2015).

[79]  D'Alessandro, D. M., Smit, B. and Long, J. R., “Carbon dioxide capture: prospects for new materials”, Angew. Chem. Int. Edit., 49, 6058 (2010).

[80]  Liu, J., Hou, X., Park, H. B. and Lin, H., “High-performance polymers for membrane CO2/N2 separation”, Chem. Eur. J., 22, 1 (2016).

[81]  Kim, S. J., Jeon, H., Kim, D. J. and Kim, J. H., “High-performance polymer membranes with multifunctional amphiphilic micelles for CO2 capture”, Chem. Sus. Chem., 8, 3783 (2015).

[82]  Lee, M. S., Park, M., Kim, H. Y. and Park, S. J., “Effects of microporosity and surface chemistry on separation performances of N-containing pitch-based activated carbons for CO2/N2 binary mixture”, Sci. Rep., 6, 23224 (2016).

[83]  Lin, H., “Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases”, The University of Texas at Austin, Ph.D. Thesis, (2005).

[84]  Robeson, L. M., Smith, Z. P., Freeman, B. D. and Paul, D. R., “Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes”, J. Membr. Sci., 453, 71 (2014).

[85]  Peng, F., Lu, L., Sun, H., Wang, Y., Liu, J. and Jiang, Z., “Hybrid organic-inorganic membrane: Solving the tradeoff between permeability and selectivity”, Chem. Mater., 17, 6790 (2005).

[86]  Ghasemi Estahbanati, E., Omidkhah, M. R. and Ebadi Amooghin, A., “Interfacial design of ternary mixed matrix membranes containing Pebax 1657/silver-nanopowder/[BMIM][BF4] for improved CO2 separation performance”, ACS Appl. Mater. Interfaces, 9, 10094 (2017).

[87]  Bettens, B., Dekeyzer, S., Van der Bruggen, B., Degrève, J. and Vandecasteele, C., “Transport of pure components in pervaporation through a microporous silica membrane”, J. Phys. Chem. B., 109, 5216 (2005).

[88]  Yu, Y., Mai, J., Huang, L., Wang, L. and Li, X., “"Ship-in-a-bottle" synthesis of ionic liquids in NaY supercages for CO2 capture”, RSC Adv., 4, 12756 (2014).

[89]  Kassaee, M. H., Sholl, D. S. and Nair, S., “Preparation and gas adsorption characteristics of zeolite MFI crystals with organic-functionalized interiors”, J. Phys. Chem. C., 115, 19640 (2011).

[90]  Hasegawa, Y., Tanaka, T., Watanabe, K., Jeong, B. -H., Kusakabe, K. and Morooka, S., “Separation of CO2-CH4 and CO2-N2 systems using ion-exchanged zeolite membranes with different Si/Al ratios”, Korean J. Chem. Eng., 19, 309 (2002).

[91]  Bastani, D., Esmaeili, N. and Asadollahi, M., “Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review”, J. Ind. Eng. Chem., 19, 375 (2013).

[92]  Alavi, S. A., Kargari, A., Sanaeepur, H. R. and Karimi, M., “Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations”, Res. Chem. Intermed., 43, 2959 (2017).

[93]  Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R. and Freeman, B. D., “Energy-efficient polymeric gas separation membranes for a sustainable future: A review”, Polymer, 54, 4729 (2013).

[94]  Mubashir, M., Fong, Y. Y., Leng, C. T. and Keong, L. K., “Optimization of spinning parameters on the fabrication of NH2-MIL-53(Al)/cellulose acetate (CA) hollow fiber mixed matrix membrane for CO2 separation”, Sep. Purif. Technol., 215, 32 (2019).

[95]  Mubashir, M., Fong, Y. Y., Keong, L. K., Leng, C. T. and Jusoh, N., “Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes”, Sep. Purif. Technol., 199, 140 (2018).

[96]  Kim, W. -G., Lee, J. S., Bucknall, D. G., Koros, W. J. and Nair, S., “Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations”, J. Membr. Sci., 441, 129 (2013).

[97]  Ahmad, A. L., Jawad, Z. A., Low, S. C. and Zein, S. H. S., “A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation”, J. Membr. Sci., 451, 55 (2014).