Methanol crossover and selectivity of nafion/heteropolyacid/montmorillonite nanocomposite proton exchange membranes for DMFC applications

Document Type: Full article

Authors

Faculty of Chemical and Petroleum Engineering, University of Tabriz, P. O. Box: 51666-16471, Tabriz, Iran

Abstract

In this work, we prepared the nafion/montmorillonite/heteropolyacid nanocomposite membranes for direct methanol fuel cells (DMFCs). The analyses such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) were conducted to characterize the filler dispersion and membrane structure in prepared nanocomposite membranes. XRD patterns of nafion-CsPW-MMT nanocomposites membranes showed the exfoliated structure of membranes by adding MMT and CsPW. SEM-EDXA results showed proper dispersion of nanoparticles in the membrane matrices. Addition of CsPW-MMT to nafion membranes increases water uptake and IEC due to increase hydrophilic groups in membranes. The proton conductivity results showed that proton conductivity increases by increasing amount of CsPW and decreasing of clay content in the membrane. Methanol crossover through polymer electrolyte membranes is a critical issue and causes an important reduction of performance in DMFCs. The developed intercalated nafion/CsPW/MMT nanocomposite membranes have successfully improved the membrane barrier properties due to the unique feature of MMT which contributed to the formation of a longer pathway towards methanol across the membrane. The lowest methanol crossover of the developed membranes in this study was 1.651×10-6 cm2 s-1 which was lower than re-cast nafion membrane (2.078×10-6 cm2 s-1). The methanol permeability was significantly reduced by the incorporation of MMT and increased by addition of CsPW in the nafion membrane. Finally, according to the selectivity results, the nafion-MMT-CsPW nanocomposite membrane with MMT mass fraction of 2.5% and CsPW mass fraction of 8% shows the best membrane selectivity and this nanocomposite membrane could be suitable for application in DMFCs.

Keywords

Main Subjects


[1]      Mohd Norddin, M. N. A., Ismail, A. F., Rana, D., Matsuura, T. and Tabe, S., “The effect of blending sulfonated poly(ether ether ketone) with various charged surface modifying macromolecules on proton exchange membrane performance”, J. Membr. Sci., 328 (1-2), 148 (2009).

[2]      Munakata, H., Yamamoto, D. and Kanamura, K., “Three-dimensionally ordered macroporous polyimide composite membrane with controlled pore size for direct methanol fuel cells”, J. Power Sources, 178 (2), 596 (2008).

[3]      Yildirim, M. H., Stamatialis, D. and Wessling, M., “Dimensionally stable nafion–polyethylene composite membranes for direct methanol fuel cell applications”, J. Membr. Sci., 321 (2), 364 (2008).

[4]      Lufrano, F., Baglio, V., Staiti, P., Arico, A. S. and Antonucci, V., “Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells”, J. Power Sources, 179 (1), 34 (2008).

[5]      Zhang, X., Tay, S. W., Hong, L. and Liu, Z., “In situ implantation of PolyPOSS blocks in Nafion® matrix to promote its performance in direct methanol fuel cell”, J. Membr. Sci., 320 (1-2), 310 (2008).

[6]      Peoples, B. C., “In situ production of polyolefin-clay nanocomposites”, Ph. D. dissertation, University of California, (2008).

[7]      Hasani-Sadrabadi, M. M., Emami, S. H. and Moaddel, H., “Preparation and characterization of nanocomposite membranes made of poly(2,6-dimethyl-1,4-phenylene oxide) and montmorillonite for direct methanol fuel cells”, J. Power Sources, 183 (2), 551 (2008).

[8]      Fu, T., Cui, Z., Zhong, S., Shi, Y., Zhao, C., Zhang, G., Shao, K., Na, H. and Xing, W., “Sulfonated poly(ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells”, J. Power Sources, 185 (1), 32 (2008).

[9]      Peighambardoust, S. J., Rowshanzamir, S. and Amjadi, M., “Review of the proton exchange membranes for fuel cell applications”, Int. J. Hydrogen Energy, 35 (17), 9349 (2010).

[10]  Kim, T. K., Kang, M., Choi, Y. S., Kim, H. K., Lee, W., Chang, H. and Seung, D., “Preparation of nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process”, J. Power Sources, 165 (1), 1 (2007).

[11]  Gaowen, Z. and  Zhentou, Z., “Organic/inorganic composite membranes for application in DMFC”, J. Membr. Sci., 261 (1-2), 107 (2005).

[12]  Lee, S. K. Gento, M., Zhuolin, L., Hui, K. S., Sang, K. L., Hui, K. N., Park, S. Y., Ha, Y. J. and Kim, J. W., “Measuring the relative efficiency of hydrogen energy technologies for implementing the hydrogen economy: An integrated fuzzy AHP/DEA approach”, Int. J. Hydrogen Energy, 36 (20), 12655 (2011).

[13]  Peighambardoust, S. J., Rowshanzamir, S., Hosseini, M. G. and Yazadanpour, M., “Self-humidifying nanocomposite membranes based on sulfonated poly(ether ether ketone) and heteropolyacid supported Pt catalyst for fuel cells”, Int. J. Hydrogen Energy, 36 (17), 10940 (2011).

[14]  Jian, T., Peng, G., Zhi, Z., Wen, L. and Zhong, S., “Preparation and performance evaluation of a nafion-TiO2 composite membrane for PEMFCs”, Int. J. Hydrogen Energy, 33 (20), 5686 (2008).

[15]  Rocchiccioli-Deltcheff, C., Thouvenot, R. and Franck, R., “Spectres i.r. et Raman d'heteropolyanions”, Spectrochimica Acta Part A: Molecular Spectroscopy, 32 (3), 587 (1976).

[16]  Mollá, S., “On the methanol permeability pristine nafion® and nafion/PVA membranes measured by different techniques: A comparison of methodologies”, Fuel Cells, 11 (6), 897 (2011).

[17]  Cui, Z., Xing, W., Liu, C. and Zhang, H., “Chitosan/heteropolyacid composite membranes for direct methanol fuel cell”, Journal of power sources, 188 (1), 24 (2009).

[18]  Müinch, W., Kreuer, K. D., Traub, U. and Maier, J., “Proton transfer in the three-dimensional hydrogen bond network of the high temperature phase of CsHSO4: A molecular dynamic study”, J. Mol. Struct., 381 (1-3), 1 (1996).

[19]  Corma, A., “Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions”, Chemical Reviews, 95, 559 (1995).

[20]  Izumi, Y., Ogawa, M. and Urabe, K., “Alkali metal salts and ammonium salts of Keggin-type heteropolyacids as solid acid catalysts for liquid-phase Friedel-Crafts reactions”, Applied Catalysis A: General, 132 (1), 127 (1995).

[21]  Rozenberg, B. A. and Tenne, R., “Polymer-assisted fabrication of nanoparticles and nanocomposites”, Progress in Polymer Science, 33 (1), 40 (2008).

[22]  De´ka´ny, I. and Haraszti, T. S., “Layered solid particles as self-assembled films”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 123, 391 (1997).

[23]  Barbora, L., “A novel composite nafion membrane for direct alcohol fuel cells”, Journal of Membrane Science, 326 (2), 721 (2009).