Document Type : Full length


1 Chemical engineering Department, Faculty of Engineering, University of Isfahan

2 Hydrogen and Fuel Cell Research Lab., Chemical Engineering Dep., Engineering Faculty, University of Kashan


In this research effect of synthesis method of magnesium aluminate as support of Ni catalysts at the reverse water gas shift (RWGS) reaction was evaluated. The RWGS reaction is applied in Carbon Dioxide Hydrogenation to Form Methanol via a Reverse Water-Gas Shift Reaction (CAMERE) process for the transformation of CO2 into methanol. The MgAl2O4 supports were prepared by sol-gel (M1), surfactant-assisted co-precipitation (M2) and ultrasonic-assisted co-precipitation (M3) techniques. 1.5wt.% Ni/M1 showed highest CO2 conversion (42.1%) and lowest CO selectivity, while 1.5wt.% Ni/M2 showed the lowest CO2 conversion and the highest CO selectivity (>92.5 %). The 1.5wt.% Ni/M3 showed similar catalytic activity as 1.5 wt.%Ni/M2, but with lower CO selectivity. The high CO selectivity of 1.5 wt.% Ni/M2 with a BET surface area of 121.7 m2g-1 was accredited to a higher dispersion of Ni particles resulted by higher total pore volume of this catalyst. High specific surface area along with large total pore volume, is effective in increasing the nickel dispersity. The following pore size distribution and total pore volume order was obtained for catalysts: 1.5wt.% Ni/M2> 1.5wt.% Ni/M3> 1.5wt.% Ni/M1. Among the prepared supports, M1 with BET of 174.5 m2.g-1 showed the highest specific surface area. All prepared supports and catalysts possessed mesoporous structure. Well dispersed NiO species with high interaction with the support were detected by TPR analysis. The SEM images detected particles with less than 80 nm for M2 and 1.5wt.%Ni/M2 samples. The long term stability test performed on 1.5wt.%Ni/M2 showed great catalytic activity after 15h on stream.


[1]     Florides, G. A. and Christodoulides, P., “Global warming and carbon dioxide through sciences”, Environ. Int., 35 (2), 390 (2009).
[2]     Davis, B. H., “Fischer-Tropsch synthesis: Current mechanism and futuristic needs”, Fuel Process. Technol., 71 (1-3), 157 (2001).
[3]     Gogate, M. R. and Davis, R. J., “Comparative study of CO and CO2 hydrogenation over supported Rh-Fe catalysts”, Catal. Commun., 11 (10), 901 (2010).
[4]     Yang, L., Pastor-Pérez, L., Gu, S., Sepúlveda-Escribano, A. and Reina, T. R., “Highly efficient Ni/CeO2-Al2O3 catalysts for CO2 upgrading via reverse water-gas shift: Effect of selected transition metal promoters”, Appl. Catal. B Environ., 232, 464 (2018).
[5]     Panaritis, C., Edake, M., Couillard, M., Einakchi, R. and Baranova, E. A., “Insight towards the role of ceria-based supports for reverse water gas shift reaction over RuFe nanoparticles”, J. CO2 Util., 26, 350 (2018).
[6]     Kim, S. S., Lee, H. H. and Hong, S. C., “The effect of the morphological characteristics of TiO2 supports on the reverse water-gas shift reaction over Pt/TiO2 catalysts”, Appl. Catal. B Environ., 119, 100 (2012).
[7]     Goguet, A., Meunier, F., Breen, J., Burch, R., Petch, M. I. and Ghenciu, A. F., “Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction”, J. Catal., 226 (2), 382 (2004).
[8]     Chen, C. S., Cheng, W. H. and Lin, S. S., “Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst”, Catal. Lett., 68 (1-2), 45 (2000).
[9]     Wang, L., Liu, H., Liu, Y., Chen, Y. and Yang, S., “Influence of preparation method on performance of Ni-CeO2 catalysts for reverse water-gas shift reaction”, J. Rare Earth., 31 (6), 559 (2013).
[10]  Wang, L., Liu, H., Chen, Y., Zhang, R. and Yang, S., “K-Promoted Co-CeO2 catalyst for the reverse water-gas shift reaction”, Chem. Lett., 42 (7), 682 (2013).
[11]  Lu, B. and Kawamoto, K., “Preparation of monodispersed NiO particles in SBA-15, and its enhanced selectivity for reverse water gas shift reaction”, J. Environ. Chem. Eng., 1 (3), 300 (2013).
[12]  Dai, B., Zhou, G., Ge, S., Xie, H., Jiao, Z., Zhang, G. and Zhang, X., “CO2 reverse water‐gas shift reaction on mesoporous M‐CeO2 catalysts”, Can. J. Chem. Eng., 95 (4), 634 (2017).
[13]  Chen, C. S., Lin, J. H., You, J. H. and Yang, K. H., “Effects of potassium on Ni-K/Al2O3 catalysts in the synthesis of carbon nanofibers by catalytic hydrogenation of CO2”, J. Phys. Chem. A, 114 (11), 3773 (2009).
[14]  Chen, C. S., Cheng, W. H. and Lin, S. S., “Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction”, Appl. Catal. A Gen., 257 (1), 97 (2004).
[15]  Porosoff, M. D., Kattel, S., Li, W., Liu, P. and Chen, J. G., “Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides”, Chem.Commun., 51 (32), 6988 (2015).
[16]  Zhang, X., Zhu, X., Lin, L., Yao, S., Zhang, M., Liu, X. and Ma, D., “Highly dispersed copper over β-Mo2C as efficient and stable catalysts for RWGS reaction”, ACS Catal., 7 (1), 912 (2016).
[17]  Mouyane, M., Jaber, B., Bendjemil, B., Bernard, J., Houivet, D. and Noudem, J. G., “Sintering behavior of magnesium aluminate spinel MgAl2O4 synthesized by different methods”, Int. J. Appl. Ceram. Technol., 16 (3), 1138 (2019).
[18]  Păcurariu, C., Lazău, I., Ecsedi, Z., Lazău, R., Barvinschi, P. and Mărginean., G., “New synthesis methods of MgAl2O4 spinel”, J. Euro. Ceram. Soc., 27 (2-3), 707 (2007).
[19]  Mimani, T., “Instant synthesis of nanoscale spinel aluminates”, J. alloy. compd., 315 (1-2), 123 (2001).
[20]  Ganesh, I., Srinivas, B., Johnson, R., Saha, B. P. and Mahajan, Y. R., “Effect of fuel type on morphology and reactivity of combustion synthesised MgAl2O4 powders”, Brit. Ceram. Trans., 101 (6), 247 (2002).
[21]  Pati, R. K. and Pramanik, P., “Low‐temperature chemical synthesis of nanocrystalline MgAl2O4 spinel powder”, J. Am. Ceram. Soc., 83 (7), 1822 (2000).
[22]  Ianoş, R. and Lazău, R., “Combustion synthesis, characterization and sintering behavior of magnesium aluminate (MgAl2O4) powders”, Mater. Chem. Phys., 115 (2-3), 645 (2009).
[23]  Rodrigues, M. T., Zonetti, P. C., Alves, O. C., Sousa-Aguiar, E. F., Borges, L. E. and Appel, L. G., “RWGS reaction employing Ni/Mg (Al, Ni) O The role of the O vacancies”, Appl. Catal. A, 543, 98 (2017).
[24]  Ojeda-Niño, O. H., Gracia, F. and Daza, C., “Role of Pr on Ni-Mg-Al mixed oxides synthesized by microwave-assisted self-combustion for dry reforming of methane”, Ind. Eng. Chem. Res., 58 (19),7909 (2019).
[25]  Ranjbar, A., Irankhah, A. and Aghamiri, S. F., “Reverse water gas shift reaction and CO2 mitigation: nanocrystalline MgO as a support for nickel based catalysts”, J. Environ. Chem. Eng., 6 (4), 4945 (2018).
[26]  Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K. S., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”, Pure Appl. Chem., 87 (9-10), 1051 (2015).
[27]  Alothman, Z.,“A review: Fundamental aspects of silicate mesoporous materials”, Mater., 5 (12), 2874 (2012).
[28]  Li, J., Li, J., Zhu, Q., Peng, W. and Li, H., “Fabrication of hierarchical Co/MgO catalyst for enhanced CO2 reforming of CH4 in a fluidized‐bed reactor”, AIChE J., 65 (1), 120 (2019).
[29]  Saha, B., Khan, A., Ibrahim, H. and Idem, R., “Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas”, Fuel, 120 (1), 202 (2014).
[30]  Li, G., Cheng, H., Zhao, H., Lu, X., Xu, Q. and Wu, C., “Hydrogen production by CO2 reforming of CH4 in coke oven gas over Ni-Co/MgAl2O4 catalysts”, Catal. Today, 318, 46 (2018).
[31]  Zhou, H., Cheng, H., Wu, C. and Lu, X., “Effects of nickel precursor and calcination temperature on the performance of Ni/MgAl2O4 catalysts for syngas production by CO2 reforming of coke oven gas”, IOP Publishing, In IOP Conference Series: Materials Science and Engineering, 381 (1), pp. 012163 (2018).
[32]  Zhang, Q. and Guo, L., “Mechanism of the reverse water-gas shift reaction catalyzed by Cu 12 TM bimetallic nanocluster: A density functional theory study”, J. Clus. Sci., 29 (5), 867 (2018).
[33]  Lortie, M., “Reverse water gas shift reaction over supported Cu-Ni nanoparticle catalysts”, Doctoral dissertation, Université d'Ottawa/ University of Ottawa, (2014).
[34]  Sun, F. M., Yan, C. F., Guo, C. Q. and Huang, S. L., “Ni/Ce-Zr-O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS)”, Int. J. Hydrogen Energy, 40 (46), 15985 (2015).