Document Type : Research note


1 Department of Chemical Engineering, Sirjan Branch, Islamic Azad University, Sirjan, Iran

2 Esfarayen University of Technology, Esfarayen, North Khorasan, Iran

3 Department of Chemical Engineering, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran


The aim of the current research is concentrated on the synthesis of the different nanoparticles such as SnO2 and ZnO nanoparticles and SnO2-ZnO hybrid via sol gel method to investigate their photocatalytic applications for removal of methyl orange pollutant in water. Therefore, ZnCl2 and SnCl2.2H2O were used as ZnO and SnO2 source respectively. The samples were characterized by X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectroscopy. XRD results revealed that the crystalline structure of SnO2 and ZnO nanoparticles were formed. FTIR analysis confirmed the presence of ZnO and SnO2 nanoparticles. Optical properties of samples measured using UV-Vis spectrophotometer and the achieved results demonstrated that the photocatalytic activity ofSnO2-ZnO hybrid for the degradation of methyl orange is higher than that of SnO2 nanoparticles and lower than that of ZnO nanoparticles. Weight fraction dependence study also showed that the degradation of methyl orange dye increases with weight fraction. The experimental results revealed that after 35 min UV light irradiation, the photocatalytic degradation of MO using 0.5 g ZnO, hybrid of ZnOSnO2 and SnO2 nanoparticles reached to 99.35%, 92.14% and 87.91%, respectively. In addition, maximum removal efficiency of MO was related to the suspension containing of 0.5 g of ZnO hybrid equal to 99.35%.


Main Subjects

[1]        Hariharan, C., "Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited", Appl. Catal., A: General 304, 55 (2006).
[2]        Zhou, N. Polavarapu, L. Gao, N. Pan, Y. Yuan, P. Wang, Q. and Xu, Q. H.,  "TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation", Nanoscale, (2013).
[3]        Liu, H. Liu T.   Dong, X.  Hua, R. and Zhu, Z. "Preparation and enhanced photocatalytic activity of Ag-nanowires@SnO2 core–shell heterogeneous structures", Ceram. Int. 40, 16671 (2014).
[4]        Wang, X. Fan, H. Q. and Ren, P. R. "Elf-assemble flower-like SnO2/Ag hetero-structures: correlationamongcomposition,structureandphotocatalytic activity", S, Colloids Surf., A, 419, 140  (2013).
[5]        Yang, G. D. Yan, Z. F. and Xiao, T. C., "Preparation and characterization of SnO2/ZnO2/TiO2 composite semiconductor with enhanced photocatalytic activity", Appl. Surf. Sci 258, 8704 (2012).
[6]        Yin, K.  Shao, M. W.  Zhang, Z. S. and Lin, Z. Q., "A single-source precursor route to Ag/SnO2 heterogeneous nanomaterials and its photocatalysis in degradation of Conco Red, Mater", Res. Bull, 47, 3704 (2012).
[7]        Saravanan, R. Kumar, G. V.   Narayanan, V. and Stephen, A., "Comparative study on photocatalytic activity of ZnO prepared by different methods", J. of Mol. Liq., 181, 133(2013).
[8]        Linsebigler, A. L. Lu, G. and Yates, J. T., "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results", Chem. Rev. 95, 735 (1995).
[9]        Wang, H.  Baek, S.  Lee, J. and Lim, S., "High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts", Chem. Eng. J. 146, 355 (2009).
[10]      Robert, D., "Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications", Catal. Today, 122, 20 (2007).
[11]      Akurati, K. K.  Vital, A.  Dellemann, J.  Michalow, K.  Graule, T. Ferri, D. and Baiker, A. "Flame-madeWO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity", Appl. Catal. B: Environ., 79, 53 (2008).
[12]      Wang, W. W. Zhu, Y. J. and Yang, L. X., "ZnO-SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties", Adv. Funct. Mater., 17, 59 (2007).
[13]      Li, H. H. D.  Ohashi, N.  Hishita, S. and   Yoshikawa, Y., "Synthesis of nanosized nitrogen-containing MOx–ZnO (M=W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition", Catal. Today, 93, 895 (2004).
[14]      Ayati, A. Ahmadpour, A. Bamoharram, F. F. Heravi, M. M. and Rashidi, H., "Photocatalytic synthesis of gold nanoparticles using preyssler acid and their photocatalytic activity", Chin. J. Catal., 32, 978 (2011).
[15]      Wang, W. Zhang, J.  Chen, F.  He, D. and Anpo, M., "Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles", J.  Coll. Inter. Sci., 323, 182 (2008).
[16]      Ahmed, A. A. E. Hassan, M. A. S. and Kamal, A. M.,  "Preparation and using of TiO2 nanoparticles for treatment of water containing formic acid or coliform bacteria", Nanosci. Nanotechnol., 3, 90 (2013).
[17]      Zhang, M.  Sheng, G.   Fu, J. An, T. Wang, X. and Hu, X., "Novel preparation of nanosized ZnO-SnO2 with high photocatalytic activity by homogeneous co-precipitation method", Mater. Lett. 59, 3641 (2005).
[18]      Wen, Z. Wang, G. Lu, W.  Wang, Q. Zhang, Q. and Li, J., "Enhanced photocatalytic properties of mesoporous SnO2 induced by low concentration ZnO doping", Cryst. Growth Des., 7, 1722(2007).
[19]      Shi, L.  Li, C. Gu, H. and Fang, D., "Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles", Mater. Chem. Phys., 62, 62 (2000).
[20]  Liao, S. Huang, D. Yu, D.  Su, Y. and Yuan, G., "Preparation and characterization of ZnO/TiO2, SO4-2/ZnO/TiO2 photocatalyst and their photocatalysis", J. Photochem. Photobiol. A: Chem., 168, 7 (2004).
[21]      Chen, L. Huang, T. T. T, C. A. Li, J. Yuan, L. and  Cai, Q., "Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films", Appl. Surf. Sci., 273, 82 (2013).
[22]      Ramachandran, D. Brijitta, J.   Raj, N. N.  Jayanthi, V. and Rabel, A. M., "Synthesis and Characterization of Zinc Oxide Nanorods", Int  .Conf. on Advanced Nanomaterials & Emerging Engineering Technologies, New Delhi, India, 2013.
[23]      Zhang, Y. C.  Wu, X.  Hu, X. Y. and Guo, R., "Low-temperature synthesis of nanocrystalline ZnO by thermal decomposition of a ‘‘green’’ single-source inorganic precursor in air", J. Cryst. Growth, 280, 250 (2005).
[24]      Chetri, P. and Choudhury, A., "Investigation of optical properties of SnO2 nanoparticles", Physica E, 47 257(2013).
[25]      Abbasi, S. Zebarjad, S. M.  Baghban, S. H. N. and Youssefi, A., "Synthesis of TiO2 nanoparticles and decorated Multi-walled carbon nanotubes with various content of rutile titania", Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry (2015).
[26]      Balachandran, S. Selvam, K.  Babub, B. and Swaminathan, M., "The simple hydrothermal synthesis of Ag–ZnO–SnO2 nanochain and its multiple applications†", Dalton Trans., 42, 16365 (2013).
[27] Xie, Y.  Heo, S. H. Yoo, S. H.  Ali, G. and Cho, S. O., "Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes", Nanoscale Res., 5, 603 (2010).