Document Type : Full article

Authors

Membrane Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran

Abstract

New promising generations of mixed matrix membranes (MMMs), which potentially have better separation performances than the neat polymeric membranes, are prepared by the incorporation of proper filler particles within polymeric matrices. However, some undesired phenomena like the void formation around the filler particles limit this potential improvement. Having proper models is necessary to elucidate the impacts of this phenomenon on the MMMs’ separation performance. Different models have been developed but they are not able to predict the impact(s) of formed voids truly and their predicted void permeabilities are usually overestimated. In this study, the new parameter of the modified filler volume fraction  considering the MMM swollen structure due to the formed voids around the filler particles, is employed along with the formed voids’ permeabilities correction factor, as ß, to modify the Maxwell, Bruggeman and Pal models for the MMMs’ permeability prediction. Absolute average relative errors (AAREs) of the modified models predicted that MMMs’ permeabilities or selectivities were considerably reduced to 3.16, 29.92, and 21.95 % from those of the Maxwell, Bruggeman, and Pal models as 31.33, 310.64, and 67.10 % respectively. Additionally, the optimum thicknesses of the formed voids around the filler particles rationally agree with the Knudsen flow concepts.

Keywords

[1]      Javaid, A., “Membranes for solubility-based gas separation applications”, Chemical Engineering Journal, 112 (1-3), 219 (2005).
[2]      Basu, S., Cano-Odena, A. and Vankelecom, I. F. J., “Asymmetric matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations”, Journal of Membrane Science, 362 (1-2), 478 (2010).
[3]      Klaassen, R., Feron, P. H. M. and Jansen, A. E., "Membrane contactors in industrial applications", Chemical Engineering Research and Design, 83, 234 (2005).
[4]      Nik, O. G., Chen, X. Y. and Kaliaguine, S., “Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation”, Journal of Membrane Science, 379 (1-2), 468 (2011).
[5]      Nadeali, A., Kalantari, S., Yarmohammadi, M., Omidkhah, M. R., Ebadi Amooghin, A. and Zamani Pedram, M., “CO2 separation properties of a ternary mixed-matrix membrane using ultraselective synthesized macrocyclic organic compounds”, ACS Sustainable Chemistry & Engineering, 8 (34), 12775 (2020).
[6]      Kalantari, S., Omidkhah, M. R., Ebadi Amooghin, A. and Matsuura, T., “Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance”, Applied Materials Today, 18, 100491 (2020).
[7]      Xin, Q., Shao, W., Ma, Q., Ye, X., Huang, Z., Li, B., Wang, S., Li, H. and Zhang, Y., “Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets”, ACS Applied Materials & Interfaces, 12 (42), 48067 (2020).
[8]      Sarfraz, M. and Ba-Shammakh, M., “ZIF-based water-stable mixed-matrix membranes for effective CO2 separation from humid flue gas”, The Canadian Journal of Chemical Engineering, 96 (11), 2475 (2018).
[9]      Shariati, A., Omidkhah, M. R. and Zamani Pedram, M., “New permeation models for nanocomposite polymeric membranes filled with nonporous particles”, Chemical Engineering Research and Design, 90 (4), 563 (2012).
[10]  Moore, T. T. and Koros, W. J., “Non-ideal effects in organic-inorganic materials for gas separation membranes”, Journal of Molecular Structure, 739 (1-3), 87 (2005).
[11]  Cong, H., Radosz, M., Towler, B. F. and Shen, Y., “Polymer-inorganic nanocomposite membranes for gas separation”, Separation and Purification Technology, 55 (3), 281 (2007).
[12]  Coulson, J. M., Richardson, J. F. and Sinnott, R. K., Chemical engineering design, Butterworth-Heinemann, Boston, USA, (1996).
[13]  Ma, J., Ying, Y., Guo, X., Huang, H., Liu, D. and Zhong, C., “Fabrication of mixed-matrix membrane containing metal-organic framework composite with task-specific ionic liquid for efficient CO2 separation”, Journal of Materials Chemistry A, 4 (19), 7281 (2016).
[14]  Han, Y. and Ho, W. S. W., “Recent advances in polymeric membranes for CO2 capture”, Chin. J. Chem. Eng., 26 (11), 2238 (2018).
[15]  Goh, P. S., Ismail, A. F., Sanip, S. M., Ng, B. C. and Aziz, M., “Recent advances of inorganic fillers in mixed matrix membrane for gas separation”, Separation and Purification Technology, 81 (3), 243 (2011).
[16]  Shimekit, H. M. B. and Maitra, S., “Comparison of predictive models for relative permeability of CO2 in matrimid-carbon molecular sieve mixed matrix membrane”, Journal of Applied Sciences, 10, 1204 (2010).
[17]  Ward, J. K. and Koros, W. J., “Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: I. Preparation and experimental results”, Journal of Membrane Science, 377 (1-2), 75 (2011).
[18]  Shao, L., Low, B. T., Chung, T. -S. and Greenberg, A. R., “Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future”, Journal of Membrane Science, 327 (1-2), 18 (2009).
[19]  Zhao, H. -Y., Cao, Y. -M., Ding, X. -L., Zhou, M. -Q., Liu, J. -H. and Yuan, Q., “Poly(ethylene oxide) induced cross-linking modification of matrimid membranes for selective separation of CO2”, Journal of Membrane Science, 320 (1-2), 179 (2008).
[20]  Adewole, J. K., Ahmad, A. L., Ismail, S. and Leo, C. P., “Current challenges in membrane separation of CO2 from natural gas: A review”, International Journal of Greenhouse Gas Control, 17 (0), 46 (2013).
[21]  Vatanpour, V. and Sanadgol, A., “Surface modification of reverse osmosis membranes by grafting of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination improvement”, Desalination, 491, 114442 (2020).
[22]  Ye, H., Wang, J., Wang, Y., Chen, X. -P. and Shi, S. -P., “Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes”, IRAN POLYM. J., 22 (8), 623 (2013).
[23]  Aykac Ozen, H. and Ozturk, B., “Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals”, Sep. Purif. Technol., 211, 514 (2019).
[24]  Castarlenas, S., Téllez, C. and Coronas, J., “Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids”, J. Membr. Sci., 526 (Supplement C), 205 (2017).
[25]  Farrokhnia, M., Rashidzadeh, M., Safekordi, A. and Khanbabaei, G., “Fabrication and evaluation of nanocomposite membranes of polyethersulfone/α-alumina for hydrogen separation”, IRAN POLYM. J., 24 (3), 171 (2015).
[26]  Khdhayyer, M. R., Esposito, E., Fuoco, A., Monteleone, M., Giorno, L., Jansen, J. C., Attfield, M. P. and Budd, P. M., “Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1”, Sep. Purif. Technol., 173 (Supplement C), 304 (2017).
[27]  Bastani, D., Esmaeili, N. and Asadollahi, M., “Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review”, Journal of Industrial and Engineering Chemistry, 19 (2), 375 (2013).
[28]  Bakhtiari, O. and Sadeghi, N., “Mixed matrix membranes’ gas separation performance prediction using an analytical model”, Chemical Engineering Research and Design, 93, 710 (2015).
[29]  Etemadi, H., Yegani, R., Seyfollahi, M. and Rabiee, M., “Synthesis, characterization, and anti-fouling properties of cellulose acetate/polyethylene glycol-grafted nanodiamond nanocomposite membranes for humic acid removal from contaminated water”, IRAN POLYM. J., 27 (6), 381 (2018).
[30]  Liang, C. -Y., Uchytil, P., Petrychkovych, R., Lai, Y. -C., Friess, K., Sipek, M., Mohan Reddy, M. and Suen, S. -Y., “A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes”, Separation and Purification Technology, 92 (0), 57 (2012).
[31]  Pirouzfar, V. and Omidkhah, M. R., “Mathematical modeling and optimization of gas transport through carbon molecular sieve membrane and determining the model parameters using genetic algorithm”, IRAN POLYM. J., 25 (3), 203 (2016).
[32]  Karatay, E., Kalıpçılar, H. and Yılmaz, L., “Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes”, Journal of Membrane Science, 364 (1-2), 75 (2010).
[33]  Shimekit, B., Mukhtar, H. and Murugesan, T., “Prediction of the relative permeability of gases in mixed matrix membranes”, Journal of Membrane Science, 373 (1-2), 152 (2011).
[34]  Pal, R., “Permeation models for mixed matrix membranes”, Journal of Colloid and Interface Science, 317 (1), 191 (2008).
[35]  Feng, S., Bu, M., Pang, J., Fan, W., Fan, L., Zhao, H., Yang, G., Guo, H., Kong, G., Sun, H., Kang, Z. and Sun, D., “Hydrothermal stable ZIF-67 nanosheets via morphology regulation strategy to construct mixed-matrix membrane for gas separation”, Journal of Membrane Science, 593, 117404 (2020).
[36]  Petsi, A. J. and Burganos, V. N., “Interphase layer effects on transportin mixed matrix membranes”, Journal of Membrane Science, 421-422, 247 (2012).
[37]  Chehrazi, E., Raef, M., Noroozi, M. and Panahi-Sarmad, M., “A theoretical model for the gas permeation prediction of nanotube-mixed matrix membranes: Unveiling the effect of interfacial layer”, J. Membr. Sci., 570-571, 168 (2019).
[38]  Monsalve-Bravo, G. M., Smart, S. and Bhatia, S. K., “Simulation of multicomponent gas transport through mixed-matrix membranes”, J. Membr. Sci., 577, 219 (2019).
[39]  Hashemifard, S. A., Ismail, A. F. and Matsuura, T., “Prediction of gas permeability in mixed matrix membranes using theoretical models”, Journal of Membrane Science, 347 (1-2), 53 (2010).
[40]  Hashemifard, S. A., Ismail, A. F. and Matsuura, T., “A new theoretical gas permeability model using resistance modeling for mixed matrix membrane systems”, Journal of Membrane Science, 350 (1-2), 259 (2010).
[41]  Vu, D. Q., Koros, W. J. and Miller, S. J., “Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior”, Journal of Membrane Science, 211 (2), 335 (2003).
[42]  Mohammad Gheimasi, K., Mohammadi, T. and Bakhtiari, O., “Modification of ideal MMMs permeation prediction models: Effects of partial pore blockage and polymer chain rigidification”, Journal of Membrane Science, 427, 399 (2013).
[43]  Nasir, R., Mukhtar, H. and Man, Z., “Prediction of gas transport across amine mixed matrix membranes with ideal morphologies based on the Maxwell model”, RSC Advances, 6 (36), 30130 (2016).
[44]  Yang, W. Y., Cao, W., Chung, T. -S. and Morris, J., Applied numerical methods using Matlab, John Wiley & Sons Inc., (2005).
[45]  Lee, E. -S. and Youn, S. -K., “Finite element analysis of wrinkling membrane structures with large deformations”, Finite Elem. Anal. Des., 42 (8), 780 (2006).
[46]  Aroon, M. A., Ismail, A. F., Matsuura, T. and Montazer-Rahmati, M. M., “Performance studies of mixed matrix membranes for gas separation: A review”, Separation and Purification Technology, 75 (3), 229 (2010).
[47]  Erucar, I. and Keskin, S., “Computational screening of metal organic frameworks for mixed matrix membrane applications”, Journal of Membrane Science, 407-408 (0), 221 (2012).
[48]  Mahajan, R. and Koros,W. J., “Mixed matrix membrane materials with glassy polymers, Part 1”, Polymer Engineering and Science, 42, (2002).
[49]  Chung, T. -S., Jiang, L. Y., Li, Y. and Kulprathipanja, S., “Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation”, Progress in Polymer Science, 32 (4), 483 (2007).
[50]  Hosseini, S. S., Li, Y., Chung, T. -S. and Liu, Y., “Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles”, J. Membr. Sci., 302 (1-2), 207 (2007).
[51]  Shelekhin, A. B., Dixon, A. G. and Ma, Y. H., “Adsorption, permeation, and diffusion of gases in microporous membranes. II. Permeation of gases in microporous glass membranes”, Journal of Membrane Science, 75 (3), 233 (1992).
[52]  Ahn, J., Chung, W. -J., Pinnau, I. and Guiver, M. D., “Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation”, Journal of Membrane Science, 314 (1-2), 123 (2008).
[53]  Baker, R. W., Membrane technology and applications, Second ed., John Wiley & Sons Inc., (2004).
[54]  Takahashi, S. and Paul, D. R., “Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix”, Polymer, 47 (21), 7519 (2006).
[55]  Bakhtiari, O. and Sadeghi, N., “The formed voids around the filler particles impact on the mixed matrix membranes’ gas permeabilities”, International Journal of Chemical Engineering and Applications, 5 (2), 198 (2014).
[56]  Kono, T., Hu, Y., Masuda, T., Tanaka, K., Priestley, R. D. and Freeman, B. D., “Effect of fumed silica nanoparticles on the gas permeation properties of substituted polyacetylene membranes”, Polymer Bulletin, 58, 995 (2007).
[57]  Moghadam, F., Omidkhah, M. R., Vasheghani-Farahani, E., Zamani Pedram, M. and Dorosti, F., “The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes”, Separation and Purification Technology, 77 (1), 128 (2011).