Document Type : Full length


1 Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

2 Razi University



Wind energy is used to rotate a magnetic turbine in order to remove heat from the surface of a photovoltaic (PV) panel. A three-bladed turbine, which rotates with wind energy, has rotational motion underneath the studied PV panel in order to move Magnetic Nano-Particles (MNPs). In addition, effects of the magnetic field strength (B=450-830 mT), rotational velocity of the magnetic turbine (ω), and the concentration of MNPs (ϕ) on the heat removal from the PV panel area were investigated. Results showed that heat removal from PV panel was intensified by motion of pinned MNPs in the ferrofluid via the exerted external force of magnetic field. Concurrent application of available magnetic field along with ferrofluid led to 7.6-24 % temperature reduction for a PV panel. Furthermore, the produced electrical energy of the PV panel was augmented between 2.55-3.13 W depending on ϕ, ω, and B. Moreover, the impact of ω on cooling performance was also investigated, and a significant enhancement to generated power was observed. Eventually, the maximum amount of the produced power (3.13 W), maximum power enhancement percentage (32.63 %), and thermal efficiency (24 %) were achieved for B=830 mT, ω=50 cycles/min, and ϕ=0.05 (w/v).


[1]      Al-Waeli, A. H. A., Sopian, K., Chaichan, M. T., Kazem, H. A., Hasan, H. A. and Shamani, Al. N. A., “An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system”, Energy. Convers. Manage., 142 (15), 547 (2017).
[2]      Kazem, H. A., Al-Badi, H. A. S., Al-Busaidi, A. S. and Chaichan. M. T., “Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island”, Environment, Develop. Sustain., 19 (5), 1761 (2017).
[3]      Chandel, S. S. and Agarwal, T., “Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems”, Renew. Sustain. Energy. Reviews, 73, 1342 (2017).
[4]      Sardarabadi, M. Hosseinzadeh, M., Kazemian, A. and Passandideh-Fard, M., “Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints”, Energy, 138 (1), 682 (2017).
[5]      Sardarabadi, M. and Passandideh-Fard, M., “Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT)”, Sol. Energy Mater. Sol. Cells, 157, 533 (2016).
[6]      Sardarabadi M., Passandideh-Fard M. and Zeinali Heris, S., “Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)”, Energy, 66 (1), 264 (2014).
[7]      Ghadiri M., Sardarabadi, M., Pasandideh-fard, M. and Moghadam, A. J., “Experimental investigation of a PVT system performance using nano Ferrofluids”, Energy. Convers. Manage., 103, 468 (2015).
[8]      Kalogirou, S. A. and Tripanagnostopoulos, Y., “Hybrid PV/T solar systems for domestic hot water and electricity production”, Energy. Convers. Manage., 47 (18-19), 3368 (2006).
[9]      Chow, T. T., Hand, J. W. and Strachan, P. A., “Building-integrated PV and thermal applications in a subtropical hotel building”, Appl. Therm. Eng., 23 (16), 2035 (2003).
[10]  Karami, N. and Rahimi, M., “Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nanofluid”, Int. Commun. Heat. Mass. Transfer, 55, 45 (2014).
[11]  Han, X., Wang, Y. and Zhu, L., “The performance and long-term stability of silicon concen-trator solar cells immersed in dielectric liquids”, Energy. Convers. Manage.,66, 189 (2013).
[12]  Böer, K. W., “Cadmium sulfide enhances solar cell efficiency”, Energy. Convers. Manage., 52 (1), 426 (2011).
[13]  Teo, H. G., Lee, P. S. and Hawlader, M. N. A., “An active cooling system for photovoltaic panels”, Appl. Energy., 90 (1), 309 (2012).
[14]  Zhu, L., Wang, Y., Fang, Z., Sun, Y. and Huang, Q., “An effective heat dissipation method for densely packed solar cells under high concentrations”, Sol. Energy. Mater. Sol. Cells., 94 (2), 133 (2010).
[15]  Barrau, J., Rosell, J., Chemisana, D., Tadrist, L. and Ibañez, M., “Effect of a hybrid jet  impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration”, Sol. Energy., 85 (11), 2655 (2011).
[16]  Karami, N. and Rahimi, M., “Heat transfer enhancement in a PV cell using Boehmite nanofluid”, Energy. Convers. Manage., 86, 275 (2014).
[17]  Khanjari, Y., Pourfayaz, F. and Kasaeian, A. B., “Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system”, Energy. Convers. Manage., 122 (15), 263 (2016).
[18]  Radwan, A., Ahmed, M. and Ookawara, S., “Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids”, Energy. Convers. Manage., 119 (1), 289 (2016).
[19]  An, W., Wu, J., Zhu, T. and Zhu, Q., “Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter”, Appl. Energy., 184, 197 (2016).
[20]  Hussien, H. A., Noman, A. H. and Abdulmunem, A. R., “Indoor investigation for improving the hybrid photovoltaic/thermal system performance using nanofluid (Al2O3-water)”, Eng. Technol. J., 33 (6), 889 (2015).
[21]  Al-Waeli, A. H. A., Sopian, K., Chaichan, M. T., Kazem, H. A., Hasan, H. A. and Al-Shamanim, A. N., “An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system”, Energy. Convers. Manage., 142, 547 (2017).
[22]  Hasan, H. A., Sopian, K., Jaaz, A. H. and Al-Shamani, A. N., “Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector”, Sol. Energy,144 (1), 321 (2017).
[23]  Sardarabadi, M., Passandideh-Fard, M., Maghrebi, M. J. and Ghazikhani, M., “Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems”, Sol. Energy. Mater. Sol. Cells, 161, 62 (2017).
[24]  Yazdanifard, F., Ameri, M. and Ebrahimnia-Bajestan, E., “Performance of nanofluid-based photovoltaic/thermal systems: A review”, Renew. Sustain. Energy. Reviews, 76, 323 (2017).
[25]  Taylori, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R. and Tyagi, H., “Small particles, big impacts: A review of the diverse applications of nanofluids”, J. Appl. Phys., 113 (1), 11 (2013).
[26]  Azimi, N., Rahimi, M. and Abdollahi. N., “Using magnetically excited nanoparticles for liquid–liquid two-phase mass transfer enhancement in a Y-type micromixer”, Chem. Eng. Process, 97, 12 (2015).
[27]  Azimi, N. and Rahimi, M., “Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields”, J. Magn. Magn. Mater., 422 (15), 188 (2017).
[28]  Hajiani, P. and Larachi, F., “Ferrofluid applications in chemical engineering”, Int. Review. Chem. Eng., 1 (3), 221 (2009).
[29]  Ghasemian M., Najafian Ashrafi, Z., Goharkhah, M. and Ashjaee, M., “Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields”, J. Magn. Magn. Mater., 381 (1), 158 (2015).
[30]  Chandrasekar, M., Suresh, S., Senthilkumar, T. and Ganeshkarthikeyan, M., “Passive cooling of standalone flat PV panel with cotton wick structures”, Energy. Convers. Manage.,71, 43 (2013).
[31]  Jang, S. H. and Shin, M. W., “Fabrication and thermal optimization of LED solar cell simulator”, Curr. Appl. Phys., 10 (3), 537 (2010).
[32]  Li, Q. and Xuan, Y., “Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field”, Exp. Thermal. Fluid. Sci., 33 (4), 591 (2009).
[33]  Lajvardi, M., Moghimi-Rad, J., Hadi, I., Gavili, A., Dallali Isfahani, T. and Zabihi, F., “Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect”, J. Magn. Magn. Mater., 322 (21), 3508 (2010).
[34]  Ghofrani, A., Dibaei, M. H., Sima, A. H. and Shafii, M. B., “Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field”, Exp. Thermal. Fluid. Sci., 49, 193 (2013).