Document Type : Regular Article

Author

Chemical Engineering Department, University of Larestan, Lar, Iran

Abstract

Considering the high number of ionic liquids (ILs) and impracticability of laboratory measurements for all ILs’ properties, applying theoretical methods to predict the properties of this large family can be very helpful. In the present research, ILs’ thermophysical properties are predicted by a combination of statistical associating fluid theory and group contribution concept (SAFT-γ GC EoS). The studied ionic liquids are 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][CF3SO3]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][CF3SO3]), 1,3-dimethylimidazolium methylsulfate ([mmim][MeSO4]), 1-ethyl-3-methylimidazolium methylsulfate ([emim][MeSO4]), 1-butyl-3-methylimidazolium methylsulfate ([bmim][MeSO4]), 1-ethyl-3-methylimidazolium methanesulfonate ([emim][MeSO3]) and 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO4]). The thermophysical properties including coefficient of thermal expansion, coefficient of thermal pressure, coefficient of isentropic compressibility, coefficient of isothermal compressibility, speed of sound, isochoric and isobaric heat capacities are estimated within broad ranges of pressure and temperature (0.1-60 MPa and 273-413 K). The comparison among the SAFT-γ predictions and some available experimental data show good ability of SAFT-γ EoS to estimate the ILs’ second-order derivative thermophysical properties.

Keywords

Main Subjects

[1] Plechkova, N. V. and Seddon, K. R., “Applications of ionic liquids in the chemical industry”, Chemical Society Reviews, 37 (1), 123 (2008).
[2] Rostami, A., Baghban, A. and Shirazian, S., “On the evaluation of density of ionic liquids: Towards a comparative study”, Chemical Engineering Research and Design, 147, 648 (2019).
[3] Hallett, J. P. and Welton, T., “Room-temperature ionic liquids: Solvents for synthesis and catalysis, 2”, Chemical Reviews, 111 (5), 3508 (2011).
[4] Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A. and Rogers, R. D., “Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation”, Green Chemistry, 3 (4), 156 (2001).
[5] Quijada-Maldonado, E., van der Boogaart, S., Lijbers, J. H., Meindersma, G. W. and de Haan, A. B., “Experimental densities, dynamic viscosities and surface tensions of the ionic liquids series 1-
ethyl-3-methylimidazolium acetate and dicyanamide and their binary and ternary mixtures with water and ethanol at T=(298.15 to 343.15K)”, The Journal of Chemical Thermodynamics, 51, 51 (2012).
[6] Welton, T., “Ionic liquids in catalysis”, Coordination Chemistry Reviews, 248 (21), 2459 (2004).
[7] Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. and Scrosati, B., “Ionic-liquid materials for the electrochemical challenges of the future”, Nature Materials, 8 (8), 621 (2009).
[8] Ilconich, J., Myers, C., Pennline, H. and Luebke, D., “Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125 °C”, Journal of Membrane Science, 298 (1), 41 (2007).
[9] Lei, Z., Li, C. and Chen, B., “Extractive distillation: A review”, Separation & Purification Reviews, 32 (2), 121 (2003).
[10] Wytze Meindersma, G., Podt, A. and de Haan, A. B., “Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures”, Fuel Processing Technology, 87 (1), 59 (2005).
[11] Sun, Y., Schemann, A., Held, C., Lu, X., Shen, G. and Ji, X., “Modeling thermodynamic derivative properties and gas solubility of ionic liquids with ePC-SAFT”, Industrial & Engineering Chemistry Research, 58 (19), 8401 (2019).
[12] Shen, G., Held, C., Lu, X. and Ji, X., “Modeling thermodynamic derivative properties of ionic liquids with ePC-SAFT”, Fluid Phase Equilibria, 405, 73 (2015).[13] Karakatsani E. K., Economou I. G., Kroon M. C., Peters C. J. and Witkamp G. -J., “tPC-PSAFT modeling of gas solubility in imidazolium-based ionic liquids”, The Journal of Physical Chemistry C, 111 (43), 15487 (2007).
[14] Kroon, M. C., Karakatsani, E. K., Economou, I. G., Witkamp, G. -J. and Peters, C. J., “Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state”, The Journal of Physical Chemistry B, 110 (18), 9262 (2006).
[15] Andreu, J. S. and Vega, L. F., “Capturing the solubility behavior of CO2 in ionic liquids by a simple model”, The Journal of Physical Chemistry C, 111 (43), 16028 (2007).
[16] Andreu, J. S. and Vega, L. F., “Modeling the solubility behavior of CO2, H2, and Xe in [Cnmim][Tf2N] ionic liquids”, The Journal of Physical Chemistry B, 112 (48), 15398 (2008).
[17] Llovell, F., Marcos, R. M., MacDowell, N. and Vega, L. F., “Modeling the absorption of weak electrolytes and acid gases with ionic liquids using the Soft-SAFT approach”, The Journal of Physical Chemistry B, 116 (26), 7709 (2012).
[18] Ji, X. and Adidharma, H., “Thermodynamic modeling of ionic liquid density with heterosegmented statistical associating fluid theory”, Chemical Engineering Science, 64 (9), 1985 (2009).
[19] Ji, X. and Adidharma, H., “Thermodynamic modeling of CO2 solubility in ionic liquid with heterosegmented statistical associating fluid theory”, Fluid Phase Equilibria,
293 (2), 141 (2010).
[20] Ji, X. and Adidharma, H., “Prediction of molar volume and partial molar volume for CO2/ionic liquid systems with heterosegmented statistical associating fluid theory”, Fluid Phase Equilibria, 315, 53 (2012).
[21] Ashrafmansouri, S. -S. and Raeissi, S., “Modeling gas solubility in ionic liquids with the SAFT-γ group contribution method”, The Journal of Supercritical Fluids, 63, 81 (2012).
[22] Ashrafmansouri, S. -S. and Raeissi, S., “Extension of SAFT-γ to model the phase behavior of CO2+ionic liquid systems”, Fluid Phase Equilibria, 538, 113026 (2021).
[23] Llovell, F. and Vega, L. F., “Assessing ionic liquids experimental data using molecular modeling: [Cnmim][BF4] case study”, Journal of Chemical & Engineering Data, 59 (10), 3220 (2014).
[24] Maghari, A., ZiaMajidi, F. and Pashaei, E., “Thermophysical properties of alkyl-imidazolium based ionic liquids through the heterosegmented SAFT-BACK equation of state”, Journal of Molecular Liquids, 191, 59 (2014).
[25] Bakhtazma, F. and Alavi, F., “Second-order thermodynamic derivative properties of ionic liquids from ePC-SAFT: The effect of partial ionic dissociation”, Industrial & Engineering Chemistry Research, 58 (49), 22408 (2019).
[26] Ashrafmansouri, S. -S., “Modeling the density and the second-order thermodynamic derivative properties of imidazolium-, cyano-based ionic liquids using the SAFT-γ EoS”, Fluid Phase Equilibria, 548, 113190 (2021).
[27] Jackson, G., Chapman, W. G. andGubbins, K. E., “Phase equilibria of associating fluids”, Molecular Physics, 65 (1), 1 (1988).
[28] Galindo, A., Burton, S. J., Jackson, G., Visco, D. P. and Kofke, D. A., “Improved models for the phase behaviour of hydrogen fluoride: Chain and ring aggregates in the SAFT approach and the AEOS model”, Molecular Physics, 100 (14), 2241 (2002).
[29] Wertheim, M. S., “Fluids with highly directional attractive forces, I. Statistical thermodynamics”, Journal of Statistical Physics, 35 (1), 19 (1984).
[30] Wertheim, M. S., “Fluids with highly directional attractive forces, II. Thermodynamic perturbation theory and integral equations”, Journal of Statistical Physics, 35 (1), 35 (1984).
[31] Wertheim, M. S., “Fluids with highly directional attractive forces, IV. Equilibrium polymerization”, Journal of Statistical Physics, 42 (3), 477 (1986).
[32] Wertheim, M. S., “Thermodynamic perturbation theory of polymerization”, The Journal of Chemical Physics, 87 (12), 7323 (1987).
[33] Lymperiadis, A., Adjiman, C. S., Jackson, G. and Galindo, A., “A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments”, Fluid Phase Equilibria, 274 (1), 85 (2008).
[34] Lymperiadis, A., Adjiman, C. S., Galindo, A. and Jackson, G., “A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-γ)”, The Journal of Chemical Physics, 127 (23), 234903 (2007).
[35] Joback, K. G., “A unified approach to physical property estimation using multivariate statistical techniques”, M. Sc. Teshisi, Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, USA, p. 37 (1984).
[36] Poling, B. E., Prausnitz, J. M. and O'Connell, J. P., The properties of gases and liquids, 5th ed., McGraw-Hill Co., New York, USA, p. 66 (2000).
[37] Ge, R., Hardacre, C., Jacquemin, J., Nancarrow, P. and Rooney, D. W., “Heat capacities of ionic liquids as a function of temperature at 0.1 MPa, Measurement and prediction”, Journal of Chemical & Engineering Data, 53 (9), 2148 (2008).
[38] Matkowska, D. and Hofman, T., “High-pressure volumetric properties of ionic liquids: 1-butyl-3-methylimidazolium tetrafluoroborate, [C4mim][BF4], 1-butyl-3-methylimidazolium methylsulfate [C4mim][MeSO4] and 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][EtSO4]”, Journal of Molecular Liquids, 165, 161 (2012).
[39] Gardas, R. L., Costa, H. F., Freire, M. G., Carvalho, P. J., Marrucho, I. M., Fonseca, I. M. A., Ferreira, A. G. M. and Coutinho, J. A. P., “Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids”, Journal of Chemical & Engineering Data, 53 (3), 805 (2008).
[40] Tomé, L. I. N., Carvalho, P. J., Freire, M. G., Marrucho, I. M., Fonseca, I. M. A., Ferreira, A. G. M., Coutinho, J. A. P. and Gardas, R. L., “Measurements and correlation of high-pressure densities of imidazolium-based ionic liquids”, Journal of Chemical & Engineering Data, 53 (8), 1914 (2008).[41] Musiał, M., Zorębski, M., Dzida, M., Safarov, J., Zorębski, E. and Hassel, E., “High pressure speed of sound and related properties of 1‑ethyl‑3‑methylimidazolium methanesulfonate”, Journal of Molecular Liquids, 276, 885 (2019).
[42] Vercher, E., Orchillés, A. V., Miguel, P. J. and Martínez-Andreu, A., “Volumetric and ultrasonic studies of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid with methanol, ethanol, 1-propanol, and water at several temperatures”, Journal of Chemical & Engineering Data, 52 (4), 1468 (2007).
[43] Ficke, L. E., Novak, R. R. and Brennecke, J. F., “Thermodynamic and thermophysical properties of ionic liquid+water systems”, Journal of Chemical & Engineering Data, 55 (11), 4946 (2010).
[44] Pereiro, A. B., Santamarta, F., Tojo, E., Rodríguez, A. and Tojo, J., “Temperature dependence of physical properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate”, Journal of Chemical & Engineering Data, 51 (3), 952 (2006).
[45] Requejo, P. F., González, E. J., Macedo, E. A. and Domínguez, Á., “Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols”, The Journal of Chemical Thermodynamics, 74, 193 (2014).
[46] Pereiro, A. B., Verdía, P., Tojo, E. and Rodríguez, A., “Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature”, Journal of Chemical & Engineering Data, 52 (2), 377 (2007).
[47] Seoane, R. G., Corderí, S., Gómez, E., Calvar, N., González, E. J., Macedo, E. A. and Domínguez, Á., “Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids”, Industrial & Engineering Chemistry Research, 51 (5), 2492 (2012).
[48] Diedrichs, A. and Gmehling, J., “Measurement of heat capacities of ionic liquids by differential scanning calorimetry”, Fluid Phase Equilibria, 244 (1), 68 (2006).
[49] Musiał, M., Zorębski, E., Zorębski, M. and Dzida, M., “Effect of alkyl chain length in cation on thermophysical properties of two homologous series: 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imides and 1-alkyl-3-methylimidazolium trifluoromethanesulfonates”, Journal of Molecular Liquids, 293, 111511 (2019).
[50] Gardas, R. L., Freire, M. G., Carvalho, P. J., Marrucho, I. M., Fonseca, I. M. A., Ferreira, A. G. M. and Coutinho, J. A. P., “PρT measurements of imidazolium-based ionic liquids”, Journal of Chemical & Engineering Data, 52 (5), 1881 (2007).
[51] Paulechka, Y. U., Kabo, A. G., Blokhin, A. V., Kabo, G. J. and Shevelyova, M. P., “Heat capacity of ionic liquids: Experimental determination and correlations with molar volume”, Journal of Chemical & Engineering Data, 55 (8), 2719 (2010).
[52] Goldon, A., Dabrowska, K. and Hofman, T., “Densities and excess volumes of the 1,3-dimethylimidazolium methylsulfate + methanol system at temperatures from (313.15 to 333.15) K and pressures from (0.1 to 25) MPa”, Journal of Chemical &Engineering Data, 52 (5), 1830 (2007).
[53] Safarov, J., Huseynova, G., Bashirov, M., Hassel, E. and Abdulagatov, I., “High temperatures and high pressures density measurements of 1-ethyl-3-methylimidazolium methanesulfonate and Tait-type equation of state”, Journal of Molecular Liquids, 238, 347 (2017).
[54] Nieto de Castro, C. A., Langa, E., Morais, A. L., Lopes, M. L. M., Lourenço, M. J. V., Santos, F. J. V., Santos, M. S. C. S., Lopes, J. N. C., Veiga, H. I. M., Macatrão, M., Esperança, J. M. S. S., Marques, C. S., Rebelo, L. P. N. and Afonso, C. A. M., “Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]”, Fluid Phase Equilibria, 294 (1), 157 (2010).
[55] García-Miaja, G., Troncoso, J. and
Romaní, L., “Excess properties for binary systems ionic liquid+ethanol: Experimental results and theoretical description using the ERAS model”, Fluid Phase Equilibria, 274 (1), 59 (2008).
[56] Fernández, A., Torrecilla, J. S., García, J. and Rodríguez, F., “Thermophysical properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-butyl-3-methylimidazolium methylsulfate ionic liquids”, Journal of Chemical & Engineering Data, 52 (5), 1979 (2007).
[57] Gómez, E., González, B., Calvar, N., Tojo, E. and Domínguez, Á., “Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures”, Journal of Chemical & Engineering Data, 51 (6), 2096 (2006).