Document Type : Regular Article

Authors

1 Department of Chemical Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran

2 Razi University

3 Amirkabir university of technology (Tehran Polytechnic)

Abstract

The central composite design (CCD) was employed to investigate the adsorption of Pb(II) and Zn(II) metal ions as well as methylene blue (MB) as an aromatic anion by a new EDTA/MnO2/CS/Fe3O4 synthesized nanocomposite. The effect of possible affective factors including the contaminant concentration (20-200 mg/L), pH (2-8), adsorbent content (0.1-0.9 g/L), and contact time (10-110 min) on the adsorption of the metal ions using response surface methodology (RSM) were studied. The highest removal percentages predicted by the model were 100.776 % and 87.069 %, respectively, for the removal of Pb(II) and Zn(II), that the value of more than 100 % in the case of Pb(II) was due to the model’s error. The effect of the simultaneous presence of methyl blue (MB) and the metal ions in the aqueous solution on the adsorption rate of each metal ion was investigated. The study of the adsorption isotherms in the single-component adsorption showed the dominance of Langmuir isotherm over the adsorption process of each pollutant (R2 > 0.99). The maximum adsorption capacities according to the Langmuir model were 310.4 and 136 mg/g for lead and zinc ions, respectively, and 421.1 mg/g for methyl blue. The results showed that the studied nanocomposite still had high efficiency after five consecutive adsorption-desorption cycles

Keywords

Main Subjects

  • References

    • Panahandeh, A., Parvareh, A. and Keshavarz Moraveji, M., “Synthesis and characterization of γ-MnO2/chitosan/Fe3O4 cross-linked with EDTA and the study of its efficiency for the elimination of zinc(II) and lead(II) from wastewater”, Sci. Pollut. Res., 28, 9235 (2021).
    • Wu, D., Wang, Y., Li, Y., Wei, Q., Hu, L., Yan, T., Feng, R., Yang, L. and Du, B., “Phosphorylated chitosan/CoFe2O4 composite for the efficient removal of Pb(II) and Cd(II) from aqueous solution: Adsorption performance and mechanism studies”, Mol. Liq., 277, 181 (2019).
    • Ali, H., Khan, E. and Ilahi, I., “Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation”, Chem., Article ID 6730305, (2019).
    • Feng, G., Ma, J., Zhang, X., Zhang, Q., Xiao, Y., Ma, Q. and Wang, S., “Magnetic natural composite Fe3O4-chitosan@bentonite for removal of heavy metals from acid mine drainage”, Colloid Interface Sci., 538, 132 (2019).
    • Dan, L., Liu, Y., Zhou, J., Yang, K., Lou, Z., Baig, S. A. and Xu, X., “Application of EDTA functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions”, Surf. Sci., 428, 648 (2018).
    • Facchi, D. P, Cazetta, A. L., Canesin, E. A., Almeida, V. C., Bonafe, E. G., Kipper, M. J. and Martins, A. F., “New magnetic chitosan/alginate/ Fe3O4@SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems”, Eng. J., 337, 595 (2018).
    • Depci, T., Kul, A. R. and Önal, Y., “Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single- and multi-solute systems”, Eng. J., 200-202, 224 (2012).
    • Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y.,Wang, X., Lin, N. and Qi, Y., “Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution”, Surf. Sci., 279, 432 (2013).
    • Liu, C., Wu, T., Hsu, P. C., Xie, J., Zhao, J., Liu, K., Sun, J., Xu, J., Tang, J., Ye, Z., Lin, D. and Cui, Y., “Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode”, ACS Nano, 13, 6431 (2019).
    • Shabalala, A. N., Ekolu, S. O., Diop, S. and Solomon, F., “Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − Column study”, Hazard Mater., 323, 641 (2017).
    • Cui, L., Wang, Y., Gao, L., Hu, L., Yan, L., Wei, Q. and Du, B., “EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property”, Eng. J., 281, 1 (2015).
    • Wu, D., Hu, L., Wang, Y., Wei, Q., Yan, L., Yan, T., Li, Y. and Du, B., “EDTA modified β cyclodextrin/chitosan for rapid removal of Pb(II) and acid red from aqueous solution”, Colloid Interface Sci., 523, 56 (2018).
    • Petrella, A., Spasiano, D., Acquafredda, P., De Vietro, N., Ranieri, E., Cosma, P., Rizzi, V., Petruzzelli, V. and Petruzzelli, D., “Heavy metals retention (Pb(II), Cd(II), Ni(II)) from single and multimetal solutions by natural biosorbents from the olive oil milling operations”, Process Saf. Environ., 114, 79 (2018).
    • Mousavi, S. J., Parvini, M. and Ghorbani, M., “Experimental design data for the zinc ions adsorption based on mesoporous modified chitosan using central composite design method”, Polym., 188, 197 (2018).
    • Silva, S. B. D., Krolicka, M., Broek, L. A. M., Frissen, A. E. and Boeriu, C. G., “Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO - laccase redox system”, Polym., 186, 299 (2018).
    • Mallekpour, S. and Madani, M., “Functionalized-MnO2/chitosan nanocomposites: A promising adsorbent for the removal of lead ions”, Polym., 147, 53 (2016).
    • Kobylinska, N., Kostenko, L., Khainakov, S. and Garcia-Granda, S., “Advanced core-shell EDTA-functionalized magnetite nanoparticles for rapid and efficient magnetic solid phase extraction of heavy metals from water samples prior to the multi-element determination by ICP-OES”, Acta. 187 (5), 289 (2020).
    • Ritonga, H., Nurfadillah, A., Rembon, F. S., Ramadhan, L. O. A. N. and Nurdin, M., “Preparation of chitosan-EDTA hydrogel as soil conditioner for soybean plant (Glycine max)”, Sustain. Dev., 9, 100277 (2019).
    • Sabrina, F. L., Andrei, V. I., Luana, P., Guilherme, L. D., Luiz, A. A. P. and Tito, R. S. C., “Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption”, Environ. Chem. Eng., 7 (5), 103396 (2019).
    • Martín-Lara, M. A., Calero, M., Ronda, A., Iáñez-Rodríguez, I. and Escudero, C., “Adsorptive behavior of an activated carbon for bisphenol A removal in single and binary (bisphenol A—heavy metal) solutions”, Water, 12 (8), 2150 (2020).
    • Taoufik, N., Elmchaouri, A., Mahmoudi, S. A., Korili, S. A. and Gil, A., “Comparative analysis study by response surface methodology and artificial neural network on salicylic acid adsorption optimization using activated carbon”, Nanotechnol. Monit. Manag., 15, 100448 (2021).
    • Khanniri, E., Yousefi, M., Mortazavian, A. M., Khorshidian, N., Sohrabvandi, S., Arab, M. and Koushki, M. R., “Effective removal of lead (II) using chitosan and microbial adsorbents: Response surface methodology (RSM)”, J. Biol. Macromol., 178, 53 (2021).
    • Sawood, G. M., Mishra, A. and Gupta, S. K., “Optimization of arsenate adsorption over aluminum-impregnated tea waste biochar using RSM–central composite design and adsorption mechanism”, Hazard. Toxic Radioact. Waste, 25 (2), 04020075 (2021).
    • Cheraghipour, E. and Mahmoud Pakshir, M., “Environmentally friendly magnetic chitosan nano-biocomposite for Cu(II) ions adsorption and magnetic nano-fluid hyperthermia: CCD-RSM design”, Environ. Chem. Eng., 9 (2), 104883 (2021).
    • Achour, Y., Bahsis, L., Ablouh, E. H., Yazid, H., Laamari, M. R. and Haddad, M., “Insight into adsorption mechanism of Congo red dye onto Bombax Buonopozense bark activated-carbon using central composite design and DFT studies”, Interfaces, 23, 100977 (2021).
    • Alipour, M., Zarinabadi, S., Azimi, A. M. and Mirzaei, M., “Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea- functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM)”, J. Biol.  Macromol., 151, 124 (2020).
    • Jafarnejad, M., Asli, M. D., Taromi, F. A. and Manoochehri, M., “Synthesis of multi-functionalized Fe3O4-NH2-SH nanofiber based on chitosan for single and simultaneous adsorption of Pb(II) and Ni(II) from aqueous system”, J. Biol. Macromol., 148, 201 (2020).
    • Biswas, S., Sen, T. K., Yeneneh, A. M. and Meikap, B. C., “Synthesis and characterization of a novel Ca-alginate-biochar composite as efficient zinc (Zn2+) adsorbent: Thermodynamics, process design, mass transfer and isotherm modeling”, Sci. Technol., 54, 359 (2019).
    • Chen, B., Zhao, H., Chen, S., Long, F., Huang, B., Yang, B. and Pan, X., “A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater”, Eng. J., 356, 69 (2019).
    • Aghazadeh, M., Asadi, M., Maragheh, M. G., Ganjali, M. R., Norouzi, P. and Faridbod, F., “Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics”, Surf. Sci., 364, 726 (2015).
    • Zeng, M., Zhang, X., Shao, L., Qi, C. and Zhang, X. M., “Highly porous chitosan microspheres supported palladium catalyst for coupling reactions in organic and aqueous solutions”, Organomet. Chem., 704, 29 (2012).
    • Dinh, V. P, Li, N. C., Tuyen, A., Hung, N. Q., Nguyen, V. D. and Nguyen, N. T., “Insight into adsorption mechanism of lead(II) from aqueous solution by chitosan loaded MnO2 nanoparticles”, Chem. Phys., 207, 294 (2018).
    • Liu, Y., Xiong, Y., Xu, P., Pang, Y. and Du, C., “Enhancement of Pb (II) adsorption by boron doped ordered mesoporous carbon: Isotherm and kinetics modeling”, Total Environ., 708, 134918 (2020).