Document Type : Full article


Environmental Engineering Research Center (EERC), Faculty of Chemical Engineering, Sahand University of Technology, Sahand New Town, Tabriz, Iran


In this paper, xCuO/CeO2–γAl2O3 nano-catalysts were successfully synthesized by precipitation from an aqueous solution which modified via ultrasonic waves. For characterization of xCuO/CeO2–γAl2O3 samples N2 adsorption results showed that the BET surface area of the CuO/CeO2–γAl2O3, X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-rays (EDX dot-mapping) were used. The BET, XRD and SEM results indicate that CuO/CeO2-γAl2O3 particles are nano-structured catalysts. These catalysts (xCuO/CeO2–γAl2O3) have high specific surface area and finer particle that confirm SEM pictures. xCuO/CeO2-γAl2O3 catalysts compared to other previous synthesised catalysts for selective CO oxidation. The activity and selectivity of these catalysts obtained in the presence of rich hydrogen stream, with space velocity of 30,000 h−1 in the absence of CO2 and H2O. Results show that CuO/CeO2–γAl2O3 catalyst represents high CO conversion in low temperature (less than 120 ◦C), and selectivity of more than 63% at 100 ◦C. Also, results show that decreasing of CeO2 amount decreases selectivity of CO oxidation.


Main Subjects

[1]         Marschner, F.  and Moeller, F. W.,  "Methanol Synthesis", Applied Industrial Catalysis, Academic Press in: B.E. Leach (Ed.). 215 (1983).
[2]         Tanaka, H. Kuriyama, M. Ishida. Y. Ito, S. I. Tomishige, K. and K. Kunimori, "Preferential CO oxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals", Appl. Catal A., 343 (1-2), 117 (2008).
[3]         Shen, W. J. Ichihashi, Y. Ando, H. Matsumura, Y. and Haruta, m., "Effect of reduction temperature on structural properties and CO/CO2 hydrogenation characteristics of a Pd–CeO2 catalyst", Appl. Catal. A., 217 (1-2), 231 (2001).
[4]         Pozdnyakova, O. D. Teschner, A. Wootsch, J. Krohnert, B. Steinhauer and H. Sauer, "Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism", J. Catal.,  237 (1), 17 (2006).
[5]         Chin, S. Y.  Alexeev, O. S. and Amiridis, M. D., "Preferential oxidation of CO under excess H2 conditions over Ru catalysts", Appl. Catal. A., 286 (2), 157 (2005).
[6]         Han, Y. F. Kahlich, M. J. Kinne, M. and Behm, R. J., "CO removal from realistic methanol reformate via preferential oxidation – performance of an Rh/MgO catalyst and comparison to Ru/γ-Al2O3, and Pt/γ-Al2O3", Appl. Catal. B., 50 (4), 209 (2004).
[7]      Chang, L. H. Sasirekha, N. and Chen, Y. W., "Au/MnO2–TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream", Catal. Commun. 8 (11), 1702 (2007).
[8]      Deng, W. L. Jesus, J. D. Saltsburg, H. and Flytzani-Stephanopoulos, M., "Low-content gold-ceria catalysts for the water–gas shift and preferential CO oxidation reactions", Appl. Catal. A.291 (1-2), 126 (2005).
[9]      Wang, H. Zhu, H. Q. Qin, Z. F. Wang, G. F. Liang, F.X. and Wang, J. G., "Preferential oxidation of CO in H2 rich stream over Au/CeO2–Co3O4", Catal Commun., 9 (6), 1487 (2008).
[10]  Teng, Y. H. Sakurai, A. Ueda and Kobayashi, T., "Oxidative removal of CO contained in hydrogen by using metal oxide catalysts", Int. J. Hydrogen Energy, 24 (4), 355 (1999).
[11]  Guo, Q. and Liu, Y., "MnOx modified Co3O4–CeO2 catalysts for the preferential oxidation of CO in H2-rich gases", Appl. Catal. B, 82 (1-2), 19 (2008).
[12]  Kang, M. Song M. W. and Lee, C. H. "Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts", Appl. Catal. A., 251 (1), 143 (2003).
[13]  Cheekatamarla, P. K. Epling, W. S. and Lane, A. M., "Catalytic Autothermal Reforming of Diesel Fuel for Hydrogen Generation in Fuel Cells", J. Power Sources, 152, 256 (2005).
[14]  Avgouropoulos, G. Ioannides, T. and Matralis, H. "Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO", Appl. Catal. B., 56 (1-2), 87 (2005).
[15]  Marba, n. G. and Fuertes. A. B., "A general and low-cost synthetic route to high-surface area metal oxides through a silica xerogel template", App. Catal. B., 57 (1), 43 (2005).
[16]  karimi, A. Fatehifar, E. and Alizadeh, R. "synthesis and characterization of nanostructured CuO/CeO2 catalyst via ultrasound assisted techniques used for selective oxidation of CO", IJChE, 10 (3), 50 (2013).
[17]  Sedmak, G. and Stanko, H. C., "Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2−y catalyst", J. Catal., 213 (2), 135 (2003).
[18]  Guimaraes, C. and Assaf, M., "Hydrogen purification for fuel cell using CuO/CeO2–Al2O3 catalyst", J. Power Sources, 196 (2), 747 (2011).
[19]  Pouretedal, H. and Kadkhodaie, R. A., "Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism", Chin J Catal., 31 (11), 1328 (2010).
[20]  Zhang, J. and Ostrovski, O., "Iron ore reduction/ cementation experimental results and kinetic modeling", Ironmak. Steelmak, 29 (1), 15 (2002 (.
[21]  Zheng, X. Wang, S. Zhang, S. Wang, S. r. Huang, W. p. and Wu, S. H., "Characterization and CO oxidation behavior of CuO/CeO2 catalysts", React Kinet. Catal. L., 84 (1), 29 (2005).
[22]  Avoguropolos, G. Ioannides, T. Matralis, H. K. Batista, and J. Hocevar, S., "CuO – CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen", Catal. Lett.,  73, 33 (2001).