Document Type : Full article


1 Department of Chemical Engineering, Faculty of Engineering, University of Tehran, 11365-4563, Tehran, Iran

2 2Nuclear Science and Technology Research Institute, 11365-8486, Tehran, Iran

3 Nuclear Science and Technology Research Institute, 11365-8486, Tehran, Iran


Adsorption of Ce(III) from aqueous solution by amino phosphate modified nano TiO2 was investigated. Effects of pH of solution, adsorbent dose, contact time, initial metal concentration and temperature were examined. Experimental data were fitted well by the pseudo second order model. Adsorption was well described by Freundlich isotherm model with a maximum adsorption capacity of 25 mg g-1. According to the obtained thermodynamic parameters, the adsorption was a spontaneous and endothermic process. Effect of interfering cations was studied. The presence of Ca and Mg ions up to 150 mg L-1 showed no considerable effect on the adsorption of Ce(III). Regeneration of adsorbent was performed using HNO3 with efficiency greater than 84%. The quantities of distribution coefficient (Kd), the affinity of metal for retention onto solid phase, was the higher for Ce(III) than La(III). Due to the high sorption capacity, being plentiful and low cost it is concluded that the use of amino phosphate mofified nano titania as an appropriate adsorbent is promising for the removal of lanthanides especially Ce(III) from contaminated sites.


Main Subjects

[1] Morgan, B. N. and Thomas, R. G, McClellan, R. O., "Influence of chemical state of cerium-144 on its metabolism following inhalation by mice",  Am. Ind. Hyg. Assoc. J., 31 (4), 479 (1970).
[2] Galle, P. Berry, J. P. and Galle, C., "Role of alveolar macrophages in precipitation of mineral elements inhaled as soluble aerosols", Environ. Health Perspect. 97, 145 (1992).
[3] Sharma, A. and Talukder, G., "Effects of metals on chromosomes of higher organisms", Environ. Mutat., 9 ,191 (1987).
[4] Kartha, C. C. Eapen, J. T. Radhakumary, C. Kutty, V. R. Ramani, K. and Lal, A.V., "Pattern of cardiac fibrosis in rabbits periodically fed a magnesium-restricted diet and administered rare earth chloride through drinking water", Biol. Trace Elem. Res., 63 (1), 19 (1998).
[5] Wulfsberg, G., Inorganic chemistry, Sausalito, CA., University Science Books, p. 59 (2000).
[6] Jakupec, M. A. Unfried, P. and Keppler, B. K., "Pharmacological properties of cerium compounds", Rev. Physiol. Biochem. Pharmacol., 153, 101 (2005).
[7] Kilbourn, B., Cerium and Cerium Compounds, Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley and Sons, New York, USA (2003).
[8] Higgins, W. M. Churilov, A. van Loef, E. Glodo, J. Squillante, M. and Shah, K., "Crystal growth of large diameter LaBr3:Ce and CeBr3",  J. Cryst. Growth, 310 (7), 2085 (2008).
[9] Fu, F. and Wang, Q., "Removal of heavy metal ions from wastewaters",  J. Environ. Manage., 92 (3), 407 (2011).
[10] Lee, I. Kuan, Y. C. and Chern, J. M., "Equilibrium and kinetics of heavy metal ion exchange", J. Chin. Inst. Chem. Eng., 38 (1), 71 (2007).
[11] Polat, H. and Erdogan, D., "Heavy metal removal from waste waters by ion flotation", J. Hazard. Mater., 148 (1-2), 267 (2007).
[12] Goncharuk, V. V. Kornilovich, B. Y. Pavlenko, V. M. Babak, M. I. Pshinko, G. N. and Pysmennyi, B. V., "Uranium compounds purification from water and wastewater",  J. Water Chem. Technol., 23, 44, (2001).
[13] Veglio, F. Prisciandaro, M. and Ferella, F., "Removal of heavy metals by surfactant enhanced ultrafiltration from wastewaters", Desalination, 207 (1), 125 (2007).
[14] Kim, J. S. Lee, C. H. Han, S. H. and Suh, M. Y., "Studies on complexation and solvent extraction of lanthanides in the presence of diaza-18-crown-6-di-isopropionic acid", Talanta, 45 (2), 437 (1997).
[15] Mohan, D. S. and Chander, S., "Single component and multi-component adsorption of metal ions by activated carbons", Colloid Surface, A, 177 (2-3), 183 (2001).
[16] Reddad, Z. Gerente, C. Andres, Y. and Le Cloirec P., "Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies",  Environ. Sci. Technol., 36 (9), 2067 (2002).
[17] Ünlü, N. and Ersoz, M., "Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions", J. Hazard. Mater., 136 (2), 272 (2006).
[18] Gupta, S. S. and Bhattacharyya, K. G., "Kinetics of Ad-Sorption of Metal Ions on Inorganic Materials: A Review", Adv. Colloid Interface Sci., 162 (1-2), 39 (2011).
[19] Gupta, V. K. and Sharma, S., "Removal of zinc from aqueous solutions using bagasse fly ash -  a low cost adsorbent", Ind. Eng. Chem. Res., 42 (25), 6619 (2003).
[20] Kadirvelu, K. Thamaraiselvi, K. and Namasivayam, C., "Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste", Bioresour.Technol., 76 (1), 63 (2001).
[21] Stafiej, A. and Pyrzynska, K., "Adsorption of heavy metal ions with carbon nanotubes", Sep. Purif. Technol.,  58 (1), 49 (2007).
[22] Subotić, B. and Bronić, J., "Removal of cerium (III) species from solutions using granulated zeolites", J. Radioanal. Nucl. Chem.,  102 (2), 465 (1986).
[23] Erdem, E. Karapinar, N. and Donat, R., "The removal of heavy metal cations by natural zeolites", J. Colloid Interface Sci.,  280 (2), 309 (2004).
[24] Ng, J. Cheung, W. and McKay, G., "Equilibrium studies of the sorption of Cu (II) ions onto chitosan", J. Colloid Interface Sci., 255 (1), 64 (2002).
[25] Celis, R. Hermosin, M. C. and  Cornejo, J., "Heavy metal adsorption by functionalized clays", Environ. Sci. Technol., 34 (21), 4593 (2000).
[26] Potgieter, J. Potgieter-Vermaak, S. and Kalibantonga, P., "Heavy metals removal from solution by palygorskite clay", Miner. Eng.,  19 (5), 463 (2006).
[27] Sud, D. Mahajan, G. and Kaur, M., "Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions", Bioresour. Technol., 99 (14), 6017 (2008).
[28] Hua, M. Zhang S. Pan, B. Zhang, W. Lv, L. and Zhang, Q., "Heavy metal removal from water/wastewater by nanosized metal oxides", J. Hazard. Mater., 211-212, 317 (2012).
[29] Xiangtao, W. Yifei, G. Li, Y. Meihua, H. Jing, Z. and Xiaoliang, C., "Nanomaterials as Sorbents to Remove Heavy Metal Ions in Wastewater Treatment", J. Environ. Anal. Toxicol, 2 (7( (2012).
[30] Bhattacharya, S. Saha, I. Mukhopadhayay, A. Chattopadhyay, D. and Chand, U., "Role of nanotechnology in water treatment and purification: Potential applications and implications", Int. J. Chem. Sci. Technol., 3 (3), 59 (2013).
[31] Nabi, D. Aslam, I. and Qazi, I. A., "Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal", J. Environ. Sci., 21 (3), 402 (2009).
[32] Dou, B. Dupont, V. Pan, W. and Chen, B., "Removal of aqueous toxic Hg (II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite", Chem. Eng. J., 166 (2), 631 (2011).
[33] Visa, M. and Duta, A., "TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants", Chem. Eng. J.,  223, 860 (2013).
[34] Al-Rashdi, B. Tizaoui, C. and Hilal, N., "Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent", Chem. Eng. J.,  183, 294 (2012).
[35] Parida, K. Mishra, K. G. and Dash, S. K., "Adsorption of toxic metal ion Cr (VI) from aqueous state by TiO2/MCM-41", J. Hazard. Mater., 241, 395 (2012).
[36] Mahmoodi, N. M. and Najafi, F., "Synthesis, amine functionalization and dye removal ability of titania/silica nano-hybrid", Microporous Mesoporous Mater., 156, 153 (2012).
[37] Barakat, M. A. Ramadan, M. H. Al-Garny, M. A. Woodcock, H. L. and Kuhn, J. N., "Remediation of Cu (II), Ni (II), and Cr (III) ions from simulated wastewater by    dendrimer/titania composites", J. Environ. Manage., 117, 50 (2013).
[38] Huang, S. H. and Chen, D .H., "Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent", J. Hazard. Mater., 163 (1), 174 (2009).
[39] Mahdavian, A. R. and Mirrahimi, M. A. S., "Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification", Chem. Eng. J.,  159 (1), 264 (2010).
[40] Xu, P. Zeng, G. M. Huang, D. L. Feng, C. L. Hu, S. Zhao, M. H. Lai, C. Wei, Z. Huang, C. Xie, G. X. and Liu, Z. F., "Use of iron oxide nanomaterials in wastewater treatment", Sci. Total Environ., 424, 1 (2012).
[41] Iravani, E. Allahyari, S. A. Shojaei, Z. and Torab-Mostaedi, M., "Surface Modification and Spectroscopic Characterization of TiO2 Nanoparticles with 2-Aminoethyl Dihydrogen Phosphate", J. Braz. Chem. Soc., 1 (2015). 
[42] Paunikallio, T. Suvanti, M. and Pakkanen, T. T., "Viscose fiber/polyamide 12 composites: Novel gas-phase method for the modification of cellulose fibers with an aminosilane coupling agent", J. Appl. Polym. Sci., 102 (5), 4478 (2006).
[43] Kosmulski, M., Chemical properties of material surfaces, Surfactant science series, Marcel Dekker, New York, Basel, (2001).
[44] Du, J. and Kokou, L., "Structure of cerium phosphate glasses: molecular dynamic simulation", J. Am. Ceram. Soc., 94 (8), 2393 (2011).
[45] Ghasemi, Z. Seif, A. Ahmadi, T. S. Zargar, B. Rashidi, F. and Rouzbahani, G. M., "Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-TiO2 from aqueous solution", Adv. Powder Technol.,  23 (2), 148 (2012).
[46] Taty-Costodes, V. C. Fauduet, H., Porte, C. and Delacroix, A. "Removal of Cd (II) and Pb (II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris", J. Hazard. Mater., 105 (1-3), 121 (2003).
[47] Sert, S. Kütahyali, C. Inan, S. Talip, Z. Cetinkaya, B. and Eral, M., "Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder", Hydrometallurgy, 90 (1), 13 (2008).
[48] Malkoc, E.  Nuhoglu, Y. and Dundar, M., "Adsorption of chromium (VI) on pomace—an olive oil industry waste: batch and column studies", J. Hazard. Mater., 138 (1), 142 (2006).
[49] Abbasizadeh, S. Keshtkar, A. R. and Mousavian, M. A. "Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution", Chem. Eng. J., 220, 161 (2013).
[50] Chiron, N.  Guilet, R. and Deydier, E., "Adsorption of Cu (II) and Pb (II) onto a grafted silica: isotherms and kinetic models", Water Res., 37 (13), 3079 (2003).
[51] Da’na, E. De Silva, N. and Sayari, A., "Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation", Chem. Eng. J.,  166 (1), 454 (2011).
[52] Debnath, S. and Ghosh, U. C., "Nanostructured hydrous titanium (IV) oxide: synthesis, characterization and Ni (II) adsorption behavior", Chem. Eng. J.,  152 (2), 480 (2009).
[53] Debnath, S. and Ghosh, U. C. "Equilibrium modeling of single and binary adsorption of Cd (II) and Cu (II) onto agglomerated nano structured titanium (IV) oxide", Desalination, 273 (2), 330 (2011).
[54] Yang, S. Li, J. Shao, D. Hu, J. and Wang X., "Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA", J. Hazard. Mater., 166 (1), 109 (2009).
[55] Abbasizadeh, S. Keshtkar, A. R. and Mousavian, M. A. "Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups", J. Ind. Eng. Chem., 20 (4), 1656 (2014).
[56] Vuković, G. D. Marinković, A. D. Čolic, M. Ristić, M. D. Aleksić, R. Perić-Grujić A. A. and Uskoković P. S. "Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes", Chem. Eng. J.,  157 (1), 238 (2010).
[57] Kütahyali, C. Sert, Ş. Çetinkaya, B. Inan S. and Eral, M. "Factors affecting lanthanum and cerium biosorption on pinus brutia leaf powder", Sep. Sci. Technol., 45, 1456 (2010).
 [58] Shaheen, S. M. Derbalah, A. S. and Moghanm, F. S., "Removal of Heavy Metals from Aqueous Solution by
Zeolite in Competitive Sorption System", Int. J. Environ. Sci. Dev., 3 (4), 362 (2012).
[59] Jakubke, H. D. and Jeschkeit H., Concise encyclopedia chemistry, translated and revised by Eaglesom M., de Gruyter, Berline, New York, USA (1993).