Document Type : Regular Article

Authors

1 Iran university of science and technology

2 chemical Engineering Department, Iran University of Science and Technology

Abstract

In this research, silica gel as a low-cost adsorbent for the uptake of carbon dioxide was investigated experimentally. The samples were characterized by XRD, BET and FT-IR. It shows that as pressure was increased from 2 to 8 bar, the CO2 adsorption capability improved over time. At a pressure of 6 bar and a dose of 1 g of silica gel, the impact of temperature (25, 45, 65, and 85 °C) on the CO2 adsorption capacity (mg/g) was determined. The process behavior was investigated using isotherm, kinetics and thermodynamic models. As the temperature rises at a constant pressure, the adsorption capacity decreases. The experimental data of the carbon dioxide adsorption using silica gel have a high correlation coefficient with both Langmuir (0.998) and Freundlich (0.999) models. The results of the carbon dioxide adsorption kinetics with the silica gel adsorbent show that the correlation coefficient (R2) of the second-order model and Ritchie's second model are equal to 0.995 and have the highest value. The total pore volume was 0.005119 (cm3 g-1) and the specific surface area was 2.1723 (m2g−1). The maximum CO2 adsorption capacity at 25 °C near 8 bar was 195.8 mg/g.

Keywords

Main Subjects

  • Taheri, F. S., Ghaemi, A., Maleki, A. and Shahhosseini, S., “High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite”, Energy & Fuels, 33, 5384-5397 (2019).
  • Khoshraftar, Z. and Ghaemi, A., “Presence of activated carbon particles from waste walnut shell as a biosorbent in monoethanolamine (MEA) solution to enhance carbon dioxide absorption”, Heliyon, 8, e08689 (2022).
  • Khoshraftar, Z., Ghaemi, A. and Sigaroodi, A. H. M., “The effect of solid adsorbents in Triethanolamine (TEA) solution for enhanced CO2 absorption rate”, Chem. Intermed., 47, 43 (2021).
  • Naeem, S., Ghaemi, A. and Shahhosseini, S., “Experimental investigation of CO2 capture using sodium hydroxide particles in a fluidized bed”, Korean J. Chem. Eng., 33, 1278 (2016).
  • Pashaei, H., Ghaemi, A., Nasiri, M. and Karami, B., “Experimental modeling and optimization of CO2 absorption into piperazine solutions using RSM-CCD methodology”, ACS Omega, 5, 8432 (2020).
  • Li, K., Jiang, J., Tian, S., Yan, F. and Chen, X., “Polyethyleneimine-nano silica composites: A low-cost and promising adsorbent for CO2 capture”, Mater. Chem. A, 3, 2166 (2015).
  • Minju, N., Abhilash, P., Nair, B. N., Mohamed, A. P. and Ananthakumar, S., “Amine impregnated porous silica gel sorbents synthesized from water-glass precursors for CO2 capturing”, Eng. J., 269, 335 (2015).
  • Nair, B. N., Burwood, R. P., Goh, V. J., Nakagawa, K. and Yamaguchi, T., “Lithium based ceramic materials and membranes for high temperature CO2 separation”, Mater. Sci., 54, 511 (2009).
  • Chew, T.-L., Ahmad, A. L. and Bhatia, S., “Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2)”, Colloid Interface Sci., 153, 43 (2010).
  • Liu, X., Li, J., Zhou, L., Huang, D. and Zhou, Y., “Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve”, Phys. Lett., 415, 198 (2005).
  • Hu, X. E., Liu, L., Luo, X., Xiao, G., Shiko, E., Zhang, R., Fan, X., Zhou, Y., Liu, Y. and Zeng, Z., “A review of N-functionalized solid adsorbents for post-combustion CO2 capture”, Energy, 260, 114244 (2020).
  • Bhagiyalakshmi, M., Yun, L. J., Anuradha, R. and Jang, H. T., “Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: Their application to CO2 chemisorption”, Porous Mater., 17, 475 (2010).
  • Su, Y., Peng, L., Shiue, A., Hong, G. -B., Qian, Z. and Chang, C. -T., “Carbon dioxide adsorption on amine-impregnated mesoporous materials prepared from spent quartz sand”, Air & Waste Manag. Assoc., 64, 827 (2014).
  • Penchah, H. R., Ghaemi, A. and Gilani, H. G., “Efficiency increase in hypercrosslinked polymer based on polystyrene in CO2 adsorption process”, Bull., 79, 3681 (2022).
  • Fashi, F., Ghaemi, A. and Moradi, P., “Comparison of improvement efficiency of alumina and zeolite using piperazine solution for carbon dioxide adsorption”, Nashrieh Shimi va Mohandesi Shimi Iran, 39 (2), 99 (2020).
  • Parida, S. K., Dash, S., Patel, S. and Mishra, B. K., “Adsorption of organic molecules on silica surface”, Colloid Interface Sci., 121, 77 (2006).
  • Park, D., Hong, S. -H., Kim, K. -M. and Lee, C. -H., “Adsorption equilibria and kinetics of silica gel for N2O, O2, N2, and CO2”, Purif. Technol., 251, 117326 (2020).
  • Hocker, T., Rajendran, A. and Mazzotti, M., “Measuring and modeling supercritical adsorption in porous solids. Carbon dioxide on 13X zeolite and on silica gel”, Langmuir, 19, 1254 (2003).
  • Berlier, K. and Frere, M., “Adsorption of CO2 on microporous materials. 1. On activated carbon and silica gel”, Chem. & Eng. Data, 42, 533 (1997).
  • Henao, W., Jaramillo, L. Y., López, D., Romero-Sáez, M. and Buitrago-Sierra, R., “Insights into the CO2 capture over amine-functionalized mesoporous silica adsorbents derived from rice husk ash”, Environ. Chem. Eng., 8, 104362 (2020).
  • Zhu, T., Yang, S., Choi, D. K. and Row, K. H., “Adsorption of carbon dioxide using polyethyleneimine modified silica gel”, Korean J. Chem. Eng., 27, 1910 (2010).
  • Goyal, P., Purdue, M. J. and Farooq, S., “Adsorption and diffusion of N2 and CO2 and their mixture on silica gel”, & Eng. Chem. Res., 58, 19611 (2019).
  • Taghizadeh, F., Mokhtarani, B., Zadmard, R. and Jalali, M. R., “Highly selective CO2 uptake in Calix arene compounds immobilized on silica gel”, Eng. J., 417, 128115 (2021).
  • Oliveira, R. J., de Conto, J. F., Oliveira, M. R., Egues, S. M. S., Borges, G. R., Dariva, C. and Franceschi, E., “CO2/CH4 adsorption at high-pressure using silica-APTES aerogel as adsorbent and near infrared as a monitoring technique”, CO2 Util., 32, 232 (2019).
  • Garip, M. and Gizli, N., “Ionic liquid containing amine-based silica aerogels for CO2 capture by fixed bed adsorption”, Mol. Liq., 310, 113227 (2020).
  • Shen, Y., Shi, W., Zhang, D., Na, P. and Fu, B., “The removal and capture of CO2 from biogas by vacuum pressure swing process using silica gel”, CO2 Util., 27, 259 (2018).
  • Wörmeyer, K. and Smirnova, I., “Adsorption of CO2, moisture and ethanol at low partial pressure using aminofunctionalised silica aerogels”, Eng. J., 225, 350 (2013).
  • Lin, L. -Y. and Bai, H., “Facile and surfactant-free route to mesoporous silica-based adsorbents from TFT-LCD industrial waste powder for CO2 capture”, Microporous mesoporous Mater., 170, 266 (2013).
  • Ko, Y. G., Lee, H. J., Oh, H. C. and Choi, U. S., “Amines immobilized double-walled silica nanotubes for CO2 capture”, Hazard. Mater., 250, 53 (2013).
  • Linneen, N., Pfeffer, R. and Lin, Y. S., “CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine”, Microporous Mesoporous Mater., 176, 123 (2013).
  • Suzuki, M., Adsorption engineering, Kodansha, Tokyo, (1990).
  • Fomkin, A. A., “Nanoporous materials and their adsorption properties”, Met. Phys. Chem. Surfaces, 45, 121 (2009).
  • Li, Z., Zhong, D. -L., Lu, Y. -Y., Wang, J. -L., Qing, S. -L. and Yan, J., “Enhanced separation of carbon dioxide from a CO2 + CH4 gas mixture using a hybrid adsorption-hydrate formation process in the presence of coal particles”, Nat. Gas Sci. Eng., 35, 1472 (2016).
  • Hartono, A., Ciftja, A. F., Brúder, P. and Svendsen, H. F., “Characterization of amine-impregnated adsorbent for CCS post combustion”, Energy Procedia, 63, 2138 (2014).
  • Espínola, J. G. P., Arakaki, L. N. H., de Oliveira, S. F., da Fonseca, M. G., Campos Filho, J. A. A. and Airoldi, C., “Some thermodynamic data of the energetics of the interaction cation-piperazine immobilized on silica gel”, Colloids Surfaces A Physicochem. Eng. Asp., 221, 101(2003).
  • Utama, P. S., Yamsaengsung, R. and Sangwichien, C., “Production and characterization of precipitated silica from palm oil mill fly ash using CO2 impregnation and mechanical fragmentation”, Brazilian J. Chem. Eng., 36, 523 (2019).
  • Chen, X., Jiang, J., Yan, F., Tian, S. and Li, K., “A novel low temperature vapor phase hydrolysis method for the production of nano-structured silica materials using silicon tetrachloride”, RSC Adv., 4, 8703 (2014).
  • Meng, Z., Liu, Y., Li, X. and Ma, Z., “Removal of siloxane (L2) from biogas using methyl-functionalised silica gel as adsorbent”, Eng. J., 389, 124440 (2020).
  • Nguyen, H. K. D., Hoang, P. T. and Dinh, N. T., “Synthesis of modified silica aerogel nanoparticles for remediation of vietnamese crude oil spilled on water”, Braz. Chem. Soc., 29, 1714 (2018).
  • Sneddon, G., Ganin, A. Y. and Yiu, H. H. P., “Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology”, Energy Technol., 3, 249 (2015).
  • Langmuir, I., “The constitution and fundamental properties of solids and liquids. Part I. Solids”, Am. Chem. Soc., 38, 2221 (1916).
  • Saeidi, M., Ghaemi, A. and Tahvildari, K., “CO2 capture exploration on potassium hydroxide employing response surface methodology isotherm and kinetic models”, J. Chem. Chem. Eng., 39, 255 (2020).
  • Saeidi, M., Ghaemi, A., Tahvildari, K. and Derakhshi, P., “Exploiting response surface methodology (RSM) as a novel approach for the optimization of carbon dioxide adsorption by dry sodium hydroxide”, Chinese Chem. Soc., 65, 1465 (2018).
  • Ghaemi, A., Mashhadimoslem, H. and Zohourian Izadpanah, P., “NiO and MgO/activated carbon as an efficient CO2 adsorbent: characterization, modeling, and optimization”, J. Environ. Sci. Technol., 19, 727 (2022).
  • Mashhadimoslem, H., Safarzadeh, M., Ghaemi, A., Emrooz, H. B. M. and Barzegar, M., “Biomass derived hierarchical porous carbon for high-performance O2/N2 adsorption; A new green self-activation approach”, RSC Advances., 11 (57), 36125 (2021).