Document Type : Regular Article

Authors

Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran

Abstract

Optimization of the homogeneous rhodium-catalyzed methanol carbonylation reactor to reduce CO2 emissions is studied in this line of research. In this paper, the steady-state homogeneous rhodium-catalyzed methanol carbonylation reactor is simulated using Aspen HysysV.9 software, by comparing the simulation results with industrial information, a mean relative error (excluding methanol) of 4.8% was obtained, which indicates the high accuracy of the simulation. The central composite design (CCD) and genetic algorithm (GA) with the aid of a simplified process simulation were used to estimate the effect of individual variables (liquid level, the temperature of the catalyst-rich recycle stream, the mole ratio of CO to methanol (MeOH) in the feed, and flow rate of dilute acid stream) and their mutual interactions to reduce CO2 emissions. It is obtained that the liquid level percentage of 46%, the catalyst-rich recycle stream temperature of 120 °C, CO: MeOH molar ratio equal to 1.13:1, and the dilute acid flow rate of 513.14 kmol/hr lead to CO2 reduction by 34%.

Keywords

Main Subjects

  • Romanainen, J. J. and Salmi, T., “Numerical strategies in solving gas-liquid reactor models—1. Stagnant films and a steady state CSTR”, Computers & Chemical Engineering, 15 (11), 769 (1991).
  • Wang, J., Han, S., Wei, F., Yu, Z. and Jin, Y., “An axial dispersion model for gas–liquid reactors based on the penetration theory”, Chemical Engineering and Processing: Process Intensification, 36 (4), 291 (1997).
  • Markos̆, J., Pisu, M. and Morbidelli, M., “Modeling of gas-liquid reactors: Isothermal semibatch and continuous stirred tank reactors”, Computers & Chemical Engineering, 22 (4-5), 627 (1998).
  • Trambouze, P. and Euzen, J. P., Chemical reactors: From design to operation, Editions Technip, Paris, (2004).
  • Bao, Y., Yang, J., Wang, B. and Gao, Z., “Influence of impeller diameter on local gas dispersion properties in a sparged multi-impeller stirred tank”, Chinese Journal of Chemical Engineering, 23 (4), 615 (2015).
  • Da Silva, T. L., Calado, V., Silva, N., Mendes, R. L., Alves, S. S., Vasconcelos, J. M. and Reis, A., “Effects of hydrocarbon additions on gas-liquid mass transfer coefficients in biphasic bioreactors”, Biotechnology and Bioprocess Engineering, 11 (3), 245 (2006).
  • Behzadi, S. and Farid, M. M., “Production of biodiesel using a continuous gas–liquid reactor”, Bioresource Technology, 100 (2), 683 (2009).
  • Ding, J., Wang, X., Zhou, X. F., Ren, N. Q. and Guo, W. Q., “CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production”, Bioresource Technology, 101 (18), 7005 (2010).
  • Liu, K., Phillips, J. R., Sun, X., Mohammad, S., Huhnke, R. L. and Atiyeh, H. K., “Investigation and modeling of gas-liquid mass transfer in a sparged and non-sparged continuous stirred tank reactor with potential application in syngas fermentation”, Fermentation, 5 (3), 75 (2019).
  • Johnson, M. D., May, S. A., Kopach, M. E., Groh, J. M. C., White, T. D., Cole, K. P. and Shankarraman, V., “Continuous reactors for pharmaceutical manufacturing”, Continuous pharmaceutical processing, AAPS Advances in the pharmaceutical sciences series, Nagy, Z., El Hagrasy, A. and Litster, J. (eds.), Vol. 42, Springer, Cham, 23 (2020).
  • Stoll, I. K., Boukis, N. and Sauer, J., “Syngas fermentation to alcohols: Reactor technology and application perspective”, Chemie Ingenieur Technik, 92 (1-2), 125 (2020).
  • Jensen, M. B., Ottosen, L. D. M. and Kofoed, M. V. W., “H2 gas-liquid mass transfer: A key element in biological power-to-gas methanation”, Renewable and Sustainable Energy Reviews, 147, 111209 (2021).
  • Nam, J. S., Kim, A. R., Kim, D. M., Chang, T. S., Kim, B. S. and Bae, J. W., “Novel heterogeneous Rh-incorporated graphitic-carbon nitride for liquid-phase carbonylation of methanol to AcOH”, Catalysis Communications, 99, 141 (2017).
  • Kalck, P., Le Berre, C. and Serp, P., “Recent advances in the methanol carbonylation reaction into AcOH”, Coordination Chemistry Reviews, 402, 213078 (2020).
  • Jiang, H., Liu, Z., Pan, P. and Yuan, G., “A novel supported catalyst for the carbonylation of methanol”, Journal of Molecular Catalysis A: Chemical, 148 (1-2), 215 (1999).
  • Schreck, D. J., Busby, D. C. and Wegman, R. W., “A highly efficient catalyst system for the isomerization of methyl formate to AcOH”, Journal of Molecular Catalysis, 47 (1), 117 (1988).
  • Huang, W., Xie, K. C., Wang, J. P., Gao, Z. H., Yin, L. H. and Zhu, Q. M., “Possibility of direct conversion of CH4 and CO2 to high-value products”, Journal of Catalysis, 201 (1), 100 (2001).
  • Ren, Z., Lyu, Y., Song, X. and Ding, Y., “Review of heterogeneous methanol carbonylation to acetyl species”, Applied Catalysis A: General, 595, 117488 (2020).
  • Yoneda, N., Kusano, S., Yasui, M., Pujado, P. and Wilcher, S., “Recent advances in processes and catalysts for the production of AcOH”, Applied Catalysis A: General, 221 (1-2), 253 (2001).
  • Murphy, M. A., Smith, B. L., Torrence, G. P. and Aguilo, A., “Iodide and acetate promotion of carbonylation of methanol to AcOH: Model and catalytic studies”, Journal of Organometallic Chemistry, 303 (2), 257 (1986).
  • Smith, B. L., Torrence, G. P., Murphy, M. A. and Aguilo, A., “The rhodium-catalyzed methanol carbonylation to AcOH at low water concentrations: The effect of iodide and acetate on catalyst activity and stability”, Journal of Molecular Catalysis, 39 (1), 115 (1987).
  • Haynes, A., Maitlis, P. M., Morris, G. E., Sunley, G. J., Adams, H., Badger, P. W. and Watt, R. J., “Promotion of iridium-catalyzed methanol carbonylation: Mechanistic studies of the cativa process”, Journal of the American Chemical Society, 126 (9), 2847 (2004).
  • Zhang, Q., He, A., Xiao, W., Du, J., Liu, Z. and Tao, C., “Non-aqueous liquid phase synthesis of AcOH via ionic liquid promoted homogeneous carbonylation of methanol over Ir (III) catalysts”, Bulletin of the Chemical Society of Japan, 95 (3), 451 (2022).
  • Ji, W., Zhang, S., Dong, F., Feng, N., Lan, L., Li, Y. and Sun, Y., “Study on Rh (I)-o-aminophenol catalyst catalyzed carbonylation of methanol to AcOH”, Arabian Journal for Science and Engineering, 1 (2022).
  • Dimian, A. C. and Kiss, A. A., “Novel energy efficient process for AcOH production by methanol carbonylation”, Chemical Engineering Research and Design, 159, 1 (2020).
  • Caxiano, I. N., Junqueira, P. G., Mangili, P. V. and Prata, D. M., “Eco-efficiency analysis and intensification of the AcOH purification process”, Chemical Engineering and Processing-Process Intensification, 147, 107784 (2020).
  • Dickinson, R. E. and Cicerone, R. J., “Future global warming from atmospheric trace gases”, Nature, 319 (6049), 109 (1986).
  • Afzal, S., Sengupta, D., Sarkar, A., El-Halwagi, M. and Elbashir, N., “Optimization approach to the reduction of CO2 emissions for syngas production involving dry reforming”, ACS Sustainable Chemistry & Engineering, 6 (6), 7532 (2018).
  • Rostami, Z., Heidari, N., Rahimi, M. and Azimi, N., “Enhancing the thermal performance of a photovoltaic panel using nano-graphite/paraffin composite as phase change material”, Journal of Thermal Analysis and Calorimetry, 147 (5), 3947 (2022).
  • Medrano-García, J. D., Ruiz-Femenia, R. and Caballero, J. A., “Revisiting classic AcOH synthesis: Optimal hydrogen consumption and carbon dioxide utilization”, Computer Aided Chemical Engineering, 46, 145 (2019).
  • Abdulgader, M., Yu, Q. J., Zinatizadeh, A. A., Williams, P. and Rahimi, Z., “Application of response surface methodology (RSM) for process analysis and optimization of milk processing wastewater treatment using multistage flexible fiber biofilm reactor”, Journal of Environmental Chemical Engineering, 8 (3), 103797 (2020).
  • Nam, H., Kim, J. H., Kim, H., Kim, M. J., Jeon, S. G., Jin, G. T. and Ryu, H. J., “CO2 methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis”, Energy, 214, 118895 (2021).
  • Guo, Y., Dong, S. and Zhou, D., “Optimization of the photocatalyst coating and operating conditions in an intimately coupled photocatalysis and biodegradation reactor: Towards stable and efficient performance”, Environmental Research, 204, 111971 (2022).
  • Zainullin, R. Z., Zagoruiko, A. N., Koledina, K. F., Gubaidullin, I. M. and Faskhutdinova, R. I., “Multi-criterion optimization of a catalytic reforming reactor unit using a genetic algorithm”, Catalysis in Industry, 12 (2), 133 (2020).
  • Agrawal, G., Chaudhary, A. and Pani, A. K., “Temperature optimization in non-isothermal tubular reactor using genetic algorithm”, Proceedings of 3rd International Conference on Communication System, Computing and IT Applications (CSCITA), pp. 23-26 (2020).
  • Zhang, L., Chen, L., Xia, S., Ge, Y., Wang, C. and Feng, H., “Multi-objective optimization for helium-heated reverse water gas shift reactor by using NSGA-II”, International Journal of Heat and Mass Transfer, 148, 119025 (2020).
  • Pajak, M., Buchaniec, S., Kimijima, S., Szmyd, J. S. and Brus, G. A, “Multiobjective optimization of a catalyst distribution in a methane/steam reforming reactor using a genetic algorithm”, International Journal of Hydrogen Energy, 46 (38), 20183 (2021).
  • Pan, R., Martins, M. F. and Debenest, G., “Pyrolysis of waste polyethylene in a semi-batch reactor to produce liquid fuel: Optimization of operating conditions”, Energy Conversion and Management, 237, 114114 (2021).
  • Mahmoudian, F., Moghaddam, A. H. and Davachi, S. M., “Genetic‐based multi‐objective optimization of alkylation process by a hybrid model of statistical and artificial intelligence approaches”, The Canadian Journal of Chemical Engineering, 100 (1), 90 (2022).
  • Chaudhari, P., Thakur, A. K., Kumar, R., Banerjee, N. and Kumar, A., “Comparison of NSGA-III with NSGA-II for multi objective optimization of adiabatic styrene reactor”, Materials Today: Proceedings, 57, 1509 (2022).
  • Thakur, A. K., Gupta, S. K., Kumar, R., Banerjee, N. and Chaudhari, P., “Multi-objective optimization of an industrial slurry phase ethylene polymerization reactor”, International Journal of Chemical Reactor Engineering, 20 (6), 649 (2022).
  • Osat, M., Shojaati, F. and Hafizi, A. A, “Multi-objective optimization of three conflicting criteria in a methane tri-reforming reactor”, International Journal of Hydrogen Energy, 48 (16), 6275 (2023).
  • Golhosseini, R., Naderifar, A., Mohammadrezaei, A. and Nasr, M. J., “Reaction engineering studies of homogeneous rhodium-catalyzed methanol carbonylation in a laboratory semi-batch reactor”, International Journal of Chemical Reactor Engineering, 10 (1), (2012).
  • Haroun, Y., Legendre, D. and Raynal, L., “Direct numerical simulation of reactive absorption in gas–liquid flow on structured packing using interface capturing method”, Chemical Engineering Science, 65 (1), 351 (2010).
  • Jafari, O., Rahimi, M., Hosseini Kakavandi, F. and Azimi, N., “Cu (II) removal intensification using Fe3O4 nanoparticles under inert gas and magnetic field in a microchannel”, International Journal of Environmental Science and Technology, 14 (8), 1651 (2017).
  • Azimi, N., Rahimi, M. and Zangenehmehr, P., “Numerical study of mixing and mass transfer in a micromixer by stimulation of magnetic nanoparticles in a magnetic field”, Chemical Engineering & Technology, 44 (6), 1084 (2021).
  • Levenspiel, O., Chemical reaction engineering, 3rd, John Wiley and Sons, New York, USA, p. 534 (1999).
  • Waschler, R., “Nonlinear analysis of chemical processes with material and energy recycles”, Doctoral dissertation, Shaker Aachen, (2005).
  • Lindenbergh, J., Smits, E., Stegeman, M. and Van der Waal, S., “Production of acetic acid AcOH from methanol”, Chemical Process Design, 3164 (1996).
  • Thomas, C. M. and Süss-Fink, G., “Ligand effects in the rhodium-catalyzed carbonylation of methanol”, Coordination Chemistry Reviews, 243 (1-2), 125 (2003).
  • Whyman, R., Piet, W. N. M. and Van Leeuwen, “Homogeneous catalysis—understanding the art”, Kluwer, Dordrecht, 2004, (UK), p. 407 (2005).
  • Dake, S. B., Jaganathan, R. and Chaudhari, R. V., “New trends in the rate behavior of rhodium-catalyzed carbonylation of methanol”, Industrial & Engineering Chemistry Research, 28 (7), 1107 (1989).
  • Nowicki, L., Ledakowicz, S. and Zarzycki, R., “Kinetics of rhodium-catalyzed methanol carbonylation”, Industrial & Engineering Chemistry Research, 31 (11), 2472 (1992).
  • Beheshti, M. and Faizi, V., “Application of exergy analysis and response surface methodology (RSM) for reduction of exergy loss in AcOH production process”, Gas Processing Journal, 3 (1), 51 (2015).
  • Stempien, J. P., Ni, M., Sun, Q. and Chan, S. H., “Production of sustainable methane from renewable energy and captured carbon dioxide with the use of solid oxide electrolyzer: A thermodynamic assessment”, Energy, 82, 714 (2015).
  • Davoodbeygi, Y. and Irankhah, A., “Nanostructured CeCu mixed oxide synthesized by solid state reaction for medium temperature shift reaction: Optimization using response surface method”, International Journal of Hydrogen Energy, 43 (49), 22281 (2018).
  • Golhosseini, R., Naderifar, A., Mohammadrezaei, A. R. and Jafari Nasr, M. R., “Kinetic study, modeling and simulation of homogeneous rhodium-catalyzed methanol carbonylation to AcOH”, Iranian Journal of Chemistry and Chemical Engineering, 31 (1) 57 (2012).
  • Jafari, A. A., Tourani, S. and Khorasheh, F., “Simulation of methanol carbonylation reactor in AcOH production plant: Selection of an appropriate correlation for mass transfer coefficients”, International Journal of Chemical Reactor Engineering, 17 (4) 20180122 (2019).
  • Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. and Escaleira, L. A., “Response surface methodology (RSM) as a tool for optimization in analytical chemistry”, Talanta, 76 (5), 965 (2008).
  • Valitabar, M., Rahimi, M. and Azimi, N., “Experimental investigation on forced convection heat transfer of ferrofluid between two-parallel plates”, Heat and Mass Transfer, 56 (1), 53 (2020).
  • Breig, S. J. M. and Luti, K. J. K., “Response surface methodology: A review on its applications and challenges in microbial cultures”, Materials Today: Proceedings, 42, 2277 (2021).
  • Waschler, R., Kienle, A., Anoprienko, A. and Osipova, T., “Dynamic plantwide modelling, flowsheet simulation and nonlinear analysis of an industrial production plant”, Computer Aided Chemical Engineering, 10, 583 (2002).
  • Baker, E. C., Hendriksen, D. E. and Eisenberg, R., “Mechanistic studies of the homogeneous catalysis of the water gas shift reaction by rhodium carbonyl iodide”, Journal of the American Chemical Society, 102 (3), 1020 (1980).
  • Bhatti, M. S., Kapoor, D., Kalia, R. K., Reddy, A. S. and Thukral, A. K., “RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach”, Desalination, 274 (1-3), 74 (2011).
  • Hosseinpour, V., Kazemeini, M. and Mohammadrezaee, A., “A study of the water–gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilizing experimental design methodology”, Chemical Engineering Science, 66 (20), 4798 (2011).