Document Type : Regular Article


Razi University


Biodiesel, as a renewable and environmentally friendly fuel, is a feasible alternative to fossil diesel, which has gained great popularity in recent years. However, due to some undesirable properties such as higher viscosity, biodiesel must be blended with diesel in order to be utilizable in a diesel engine. Therefore, a reasonable approach is required for predicting the diesel-biodiesel blend properties. This study tries to estimate two substantial properties of blend, i.e. kinemattic viscosity (KV) and cetane number (CN), through neural network (NN) and empirical models which use pure properties of biodiesel (kinematic viscosity, boiling point, evaporation point, flash point, pour point, heat of combustion, cloud point, and specific gravity) as independent variables. In this regard, a three-layer feed-forward network with varying input parameters, training algorithms, transfer functions, and hidden neurons has been examined to predict the KV and CN of the diesel-biodiesel blend. Besides, the prediction capability of thirty empirical equations is investigated to determine the top equations describing blend properties. The result reveals that an ANN with three input parameters of biodiesel concentration (%), the CN of biodiesel, and biodiesel cloud point has the best prediction quality of CN with an R-value of 0.9961. Moreover, NN estimates the KV of blend with the highest correlation coefficient of 0.9985. The results corresponding to empirical equations also indicate that fractional-exponential equations are the best describer of the CN and KV of blend with R-values of 0.9947 and 0.9980, respectively.


  • Dharma, S.,HajiHassan, M., ChyuanOng, H.,HanraSebayang, A., SusanSilitonga, A.,Kusumo, F. and Milano, J., “Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks”, Clean. Prod., 164, 618 (2017).
  • Singh, D., Sharma, D., Soni, L., Sharma, S., Kumar Sharma, P. and Jhalani, A., “A review on feedstocks, production processes, and yield for different generations of biodiesel”, Fuel, 262, 116553 (2020).
  • Athar, M. and Zaidi, S., “A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production”, Environ. Chem. Eng., 8 (6), 104523 (2020).
  • Abomohra, A. E. -F., Elsayed, M., Esakkimuthu, S., El-Sheekh, M. and Hanelt, D., “Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives”, Energy Combust. Sci., 81, 100868 (2020).
  • Ramos, M., Dias, A. P. S., Puna, J. F., Gomes, J. and Bordado, J. C., “Biodiesel production processes and sustainable raw materials”, Energies, 12 (23), 4408 (2019).
  • Gebremariam, S. and Marchetti, J., “Economics of biodiesel production”, Energy Convers. Manag., 168, 74 (2018).
  • Alam, M. S. and Tanveer, M. S., Bioreactors, Chapter 5: Conversion of biomass into biofuel: A cutting-edge technology, Elsevier, p. 55 (2020).
  • Barik, D., Energy from toxic organic waste for heat and power generation, Woodhead Publishing, (2019).
  • Kassem, Y., Çamur, H. and Bennur, K. E., “Adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) for predicting the kinematic viscosity and density of biodiesel-petroleum diesel blends”, J. Comput. Sci. Technol., 1 (1), 8 (2018).
  • Moradi, Gh. R., Mohadesi, M., Karami, B. and Moradi, R., “Using artificial neural network for estimation of density and viscosities of biodiesel–diesel blends”, Pet. Eng., 49 (2), 153 (2015).
  • Kumar, J. and Bansal, A., “Selection of best neural network for estimating properties of diesel-biodiesel blends”, Greece, 16-19, 136 (2007).
  • Gülüm, M., Onay, F. K. and Bilgin, A., “Evaluation of predictive capabilities of regression models and artificial neural networks for density and viscosity measurements of different biodiesel-diesel-vegetable oil ternary blends”, RTU Zinat. Raksti., 22 (1), 179 (2018).
  • Yahya, S. I. and Aghel, B., “Estimation of kinematic viscosity of biodiesel-diesel blends: Comparison among accuracy of intelligent and empirical paradigms”, Energy, 177, 318 (2021).
  • Piloto-Rodríguez, R., Sánchez-Borroto, Y., Lapuerta, M., Goyos-Pérez, L. and Verhelst, S., “Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression”, Energy Convers. Manag., 65, 255 (2013).
  • Veza, I., Roslan, M. F., Muhamad Said, M. F. and Abdul Latiff, Z., “Cetane index prediction of ABE-diesel blends using empirical and artificial neural network models”, Energy Sources A: Recovery Util. Environ. Eff., 1 (2020).
  • Zheng, Y., SafdariShadloo, M., Nasiri, H., Maleki, A.,Karimipour, A. and Tlili, I., “Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations”, Energy, 153, 1296 (2020).
  • Alptekin, E. and Canakci, M., “Determination of the density and the viscosities of biodiesel–diesel fuel blends”, Energy, 33 (12), 2623 (2008).
  • Giakoumis, E. G. and Sarakatsanis, C. K., “Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition”, Fuel, 222, 574 (2018).
  • Foroughi, B., Shahrouzi, J. R. and Nemati, R., “Detection of gasoline adulteration using modified distillation curves and artificial neural network”, Eng. Technol., 44 (3), 527 (2021).
  • Babu, D., Thangarasu, V. and Ramanathan, A., “Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel”, Energy, 263, 114612 (2020).
  • Raghuvaran, S., Ashok, B., Veluchamy, B. and Ganesh, N., “Evaluation of performance and exhaust emission of CI diesel engine fuel with palm oil biodiesel using an artificial neural network”, Today: Proc., 37, 1107 (2021).
  • Humelnicu, C., Ciortan, S. and Amortila, V., “Artificial neural network-based analysis of the tribological behavior of vegetable oil–diesel fuel mixtures”, Lubricants, 7 (4), 32 (2019).
  • Kumar, S., Jain, S. and Kumar, H., “Prediction of jatropha-algae biodiesel blend oil yield with the application of artificial neural networks technique”, Energy Sources A: Recovery Util. Environ. Eff., 41 (11), 1285 (2019).
  • Hu, Y. H. and Hwang, J. -N., Handbook of neural network signal processing, Acoustical Society of America, (2002).
  • Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. and Arshad, H., “State-of-the-art in artificial neural network applications: A survey”, Heliyon, 4 (11), e00938 (2018).
  • Ghobadian, B., Rahimi, H., Nikbakht, A. M., Najafi, G. and Yusaf, T., “Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network”, Renew. Energy, 34 (4), 976 (2009).
  • de Oliveira, F. M., de Carvalho, L. S., Teixeira, L. S. G., Fontes, C. H., Lima, K. M. G., Câmara, A. B. F., Araújo, H. O. M. and Sales, R. V., “Predicting cetane index, flash point, and content sulfur of diesel–biodiesel blend using an artificial neural network model”, Energy & Fuels, 31 (4), 3913 (2017).
  • Gülüm, M. and Bilgin, A., “Measurement and prediction of density and viscosity of different diesel-vegetable oil binary blends”, RTU Zinat. Raksti, 23 (1), 214 (2019).
  • Gülüm, M., Onay, F. K. and Bilgin, A., “Comparison of viscosity prediction capabilities of regression models and artificial neural networks”, Energy, 161, 361 (2018).
  • Mujtaba, M. A., Kalam, M. A., Masjuki, H. H., Razzaq, L., Khan, H. M., Soudagar, M. E. M., Gul, M., Ahmed, A., Dhana Raju, V., Kumar, R. and Ong, H. C., “Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends”, Energy, 179, 1447 (2021).
  • Kinast, J. A., Production of biodiesels from multiple feedstocks and properties of biodiesels and biodiesel/diesel blends, National Renewable Energy Laboratory, Battelle, (2003).