Document Type : Regular Article


Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran



The purpose of this research is CFD modeling of the fluid flow inside an industrial valve in order to discover the areas with high shear stress and to determine the effect of hydrodynamic on the erosion rate. CFD results are compared with the existing experimental data in a valid reference and the model is verified with high accuracy. The impact of the pressure at inlet and the disc angle on the erosion is investigated. By increasing inlet pressure, maximum velocity, turbulence intensity, wall shear stress and particle erosion increased. However, the wall shear stress, turbulence intensity, and particle erosion are clearly reduced as the disc angle decreases. When the disc angle is less than 50o, the range of dependent parameters changes has a small value. Reducing the disc angle or increasing the inlet pressure led to an increase in cavitation. Therefore, to prevent the erosion of the butterfly valve, it is necessary to increase the disc angle or reduce the pressure at inlet. Erosion of the butterfly valve significantly occurred at the front and rear of the disc. Depending on the disc angle, the shear stress of wall for the modified configuration is 10 to 80 times lower than the original butterfly valve. Therefore, it can be stated that the modified geometry can reduce the wall shear stress and consequently the erosive for all the disc angles of the studied butterfly valve.


Main Subjects