Document Type : Regular Article

Authors

Department of Chemical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran

Abstract

Drug delivery systems (DDSs) have become a crucial aspect of cancer therapy, and researchers are continuously striving to identify the optimal methods for targeted delivery and release of therapeutic agents. Metal-Organic Frameworks (MOFs) have emerged as a promising class of materials for DDSs due to their exceptional storage capacity, unique characteristics, and high durability. This comprehensive review explores the wide-ranging applications of MOFs in various fields, including catalysis, gas separation and storage, fuel purification, water treatment, medication administration, and imaging. The review paper evaluates different approaches to synthesize MOFs, such as self-assembly of metal ions and clusters and the solvothermal method, to optimize their performance characteristics.
The present study aims to shed light on the numerous challenges associated with utilizing MOFs in clinical settings. However, MOF nanocomposites that incorporate reinforcement phases represents a promising strategy for addressing these issues. With the incidence of cancer on the rise, targeted MOFs offer a potential solution to the lack of selectivity of certain drugs by virtue of their distinctive physical and chemical properties. This investigation delves into how MOFs can be employed to regulate drug release in DDSs and presents research on key applications of MOFs in the realm of cancer therapy. The application of UiO-66 for drug delivery systems and explore the different physical characteristics and chemical structures of dicarboxylate ligands incorporated into UiO-66 topology MOFs were investigated. Overall, the review paper provides a comprehensive overview of the diverse applications of MOFs and their potential for drug delivery systems in cancer therapy.

Keywords

Main Subjects

[1]      Al Sharabati, M.; Sabouni, R.; Husseini, G.A.,“ Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Reviewˮ, Nanomaterials, 12(277)  (2022). https://doi.org/10.3390/ nano12020277
[2]      P. Tang, R. Wang, and Z. Chen, “In situ growth of Zr-based metal-organic framework UiO-66-NH2 for open-tubular capillary electrochromatographyˮ, Electrophoresis, 39(20) (2018), 2619–2625. https://doi.org/10.1002/elps.201800057
[3]      I. Abánades Lázaro et al., “Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery”, ACS Appl. Mater. Interfaces, 10(37) (2018), 31146–31157. https://doi.org/10.1021/acsami.8b11652
[4]      He, Liangcan et al., “Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapyˮ, Nanomedicine (Lond), 14(10) (2019), 1343-1365. https://doi.org/10.2217/nnm-2018-0347
[5]      Lu, Liangyu et al,“ Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Deliveryˮ, Pharmaceutics, 12(98) (2020). https://doi.org/10.3390/pharmaceutics12020098
[6] El-Shafey, Aziza A M et al. , “Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosisˮ, Materials Science Materials in Medicine, 31(11) (2020), 90. https://doi.org/10.1007/s10856-020-06429-y
[7]      Abánades Lázaro, I., Wells, C. J. R., & Forgan, R. S, “Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery”, Angewandte Chemie (International ed. in English), 59(13) (2020), 5211-5217. https://doi.org/10.1002/anie.201915848
[8]      Abánades Lázaro, Isabel et al, “Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Deliveryˮ, Chem, 2(4) (2017), 561–578. https://doi.org/10.1016/j.chempr.2017.02.005
[9]      Isabel Abánades Lázaro, Ross S. Forgan, “Application of zirconium MOFs in drug delivery and biomedicineˮ, Coordination Chemistry Reviews, 380 (2019), 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
[10]    Gao, Yan et al., “Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residuesˮ, Chromatogr. A, 1652 (2021), 462349. https://doi.org/10.1016/j.chroma.2021.462349
[11]    S. Yang et al., “A new post-synthetic polymerization strategy makes metal-organic frameworks more stableˮ, Chemical Science, 10(17) (2019), 4542–4549. http://dx.doi.org/10.1039/C9SC00135B
[12]    Ratna S. KatiyarPrateek K. Jha, “Molecular simulations in drug delivery : Opportunities and challengesˮ, WIREs computational molecular science, 8(4) (2018), 1–18. https://doi.org/10.1002/wcms.1358
[13]    Zhao, Huai-Xin et al., “Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug deliveryˮ, Chemical science, 7(8) (2016),  5294–5301. https://doi.org/10.1039/C6SC01359G
[14]    Cai, Mengru et al., “Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancerˮ, Pharmaceutics, 12(3) (2020), 232. https://doi.org/10.3390/pharmaceutics12030232.
[15]    C. Orellana-Tavra et al., “Amorphous metal-organic frameworks for drug delivery,” Chemical Communicatons, 51(73) (2015), 13878–13881. http://dx.doi.org/10.1039/C5CC05237H
[16]    P. J. Jodłowski et al., “Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects: The Vivo and in Vitroˮ, ACS Applied Materials & Interfaces, 13(1) (2021), 312–323. https://doi.org/10.1021/acsami.0c21508
[17]    B. Yang, M. Shen, J. Liu, and F. Ren, “Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cellsˮ, Pharmaceutical research, 34(11) (2017), 2440–2450. doi: 10.1007/s11095-017-2253-9
[18]    A. Ray Chowdhuri, D. Bhattacharya, and S. K. Sahu, “Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agentˮ, Dalton Transactions, 45(7) (2016),  2963–2973. https://doi.org/10.1039/C5DT03736K
[19]    M. X. Wu et al., “Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapyˮ, ACS Applied Materials & Interfaces, 10(40) (2018),  34655–34663. doi: 10.1021/acsami.8b13758.
[20]    P. Abasian, S. Khalili, S. Ghanavati, and S. Rahebi, “Polymeric nanocarriers in targeted drug delivery systems : A reviewˮ, polymers advanced technologies, 31(12) (2020), 2939-2954. https://doi.org/10.1002/pat.5031
[21]    S. Rojas et al., “Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration”, ACS Omega, 3(3) (2018), 2994–3003.  https://doi.org/10.1021/acsomega.8b00185
[22]    Orellana-Tavra, C., Mercado, S. A., & Fairen-Jimenez, D, “Endocytosis Mechanism of Nano Metal-Organic Frameworks for Drug Deliveryˮ, Advanced healthcare materials, 5(17) (2016), 2261–2270. https://doi.org/10.1002/adhm.201600296
[23]    sabel Abánades Lázaro et al., “Mechanistic investigation into the selective anticancer cytotoxicity and immune system nanoparticlesˮ, ACS Applied Materials and Interfaces, 10(6) (2018), 5255–5268. https://doi.org/10.1021/acsami.7b17756
[24]    Filippousi, Maria et al., “Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriersˮ, International Journal of Pharmaceutics, 509(1-2) (2016), 208–218. https://doi.org/10.1016/j.ijpharm.2016.05.048
[25]    Y. Liu et al., “ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapyˮ, Chemical Science, 9(38) (2018), 7505–7509. https://doi.org/10.1039/C8SC02210K
[26]    Hong Dong et al. , “Folic Acid Functionalized Zirconium-Based Metal–Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Deliveryˮ, Chemistry -A Euopean Jornal, 24(64) (2018), 17148–17154. https://doi.org/10.1002/chem.20180415
[27]    Jasmina Hafizovic Cavka et al., “A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stabilityˮ, Journal of the American Chemical Society, 130(42) (2008), 13850–13851. https://doi.org/10.1021/ja8057953
[28]    X. Zhu et al., “Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated releaseˮ, Chemical Communications, 50(63) (2014), 8779–8782. https://doi.org/10.1039/C4CC02570A
[29] Li, Zhen et al. “Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery”, Colloids and surfaces. B, Biointerfaces, 178 (2019), 1-7. https://doi.org/10.1016/j.colsurfb.2019.02.027
[1]      Al Sharabati, M.; Sabouni, R.; Husseini, G.A.,“ Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Reviewˮ, Nanomaterials, 12(277)  (2022). https://doi.org/10.3390/ nano12020277
[2]      P. Tang, R. Wang, and Z. Chen, “In situ growth of Zr-based metal-organic framework UiO-66-NH2 for open-tubular capillary electrochromatographyˮ, Electrophoresis, 39(20) (2018), 2619–2625. https://doi.org/10.1002/elps.201800057
[3]      I. Abánades Lázaro et al., “Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery”, ACS Appl. Mater. Interfaces, 10(37) (2018), 31146–31157. https://doi.org/10.1021/acsami.8b11652
[4]      He, Liangcan et al., “Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapyˮ, Nanomedicine (Lond), 14(10) (2019), 1343-1365. https://doi.org/10.2217/nnm-2018-0347
[5]      Lu, Liangyu et al,“ Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Deliveryˮ, Pharmaceutics, 12(98) (2020). https://doi.org/10.3390/pharmaceutics12020098
[6] El-Shafey, Aziza A M et al. , “Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosisˮ, Materials Science Materials in Medicine, 31(11) (2020), 90. https://doi.org/10.1007/s10856-020-06429-y
[7]      Abánades Lázaro, I., Wells, C. J. R., & Forgan, R. S, “Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery”, Angewandte Chemie (International ed. in English), 59(13) (2020), 5211-5217. https://doi.org/10.1002/anie.201915848
[8]      Abánades Lázaro, Isabel et al, “Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Deliveryˮ, Chem, 2(4) (2017), 561–578. https://doi.org/10.1016/j.chempr.2017.02.005
[9]      Isabel Abánades Lázaro, Ross S. Forgan, “Application of zirconium MOFs in drug delivery and biomedicineˮ, Coordination Chemistry Reviews, 380 (2019), 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
[10]    Gao, Yan et al., “Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residuesˮ, Chromatogr. A, 1652 (2021), 462349. https://doi.org/10.1016/j.chroma.2021.462349
[11]    S. Yang et al., “A new post-synthetic polymerization strategy makes metal-organic frameworks more stableˮ, Chemical Science, 10(17) (2019), 4542–4549. http://dx.doi.org/10.1039/C9SC00135B
[12]    Ratna S. KatiyarPrateek K. Jha, “Molecular simulations in drug delivery : Opportunities and challengesˮ, WIREs computational molecular science, 8(4) (2018), 1–18. https://doi.org/10.1002/wcms.1358
[13]    Zhao, Huai-Xin et al., “Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug deliveryˮ, Chemical science, 7(8) (2016),  5294–5301. https://doi.org/10.1039/C6SC01359G
[14]    Cai, Mengru et al., “Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancerˮ, Pharmaceutics, 12(3) (2020), 232. https://doi.org/10.3390/pharmaceutics12030232.
[15]    C. Orellana-Tavra et al., “Amorphous metal-organic frameworks for drug delivery,” Chemical Communicatons, 51(73) (2015), 13878–13881. http://dx.doi.org/10.1039/C5CC05237H
[16]    P. J. Jodłowski et al., “Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects: The Vivo and in Vitroˮ, ACS Applied Materials & Interfaces, 13(1) (2021), 312–323. https://doi.org/10.1021/acsami.0c21508
[17]    B. Yang, M. Shen, J. Liu, and F. Ren, “Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cellsˮ, Pharmaceutical research, 34(11) (2017), 2440–2450. doi: 10.1007/s11095-017-2253-9
[18]    A. Ray Chowdhuri, D. Bhattacharya, and S. K. Sahu, “Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agentˮ, Dalton Transactions, 45(7) (2016),  2963–2973. https://doi.org/10.1039/C5DT03736K
[19]    M. X. Wu et al., “Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapyˮ, ACS Applied Materials & Interfaces, 10(40) (2018),  34655–34663. doi: 10.1021/acsami.8b13758.
[20]    P. Abasian, S. Khalili, S. Ghanavati, and S. Rahebi, “Polymeric nanocarriers in targeted drug delivery systems : A reviewˮ, polymers advanced technologies, 31(12) (2020), 2939-2954. https://doi.org/10.1002/pat.5031
[21]    S. Rojas et al., “Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration”, ACS Omega, 3(3) (2018), 2994–3003.  https://doi.org/10.1021/acsomega.8b00185
[22]    Orellana-Tavra, C., Mercado, S. A., & Fairen-Jimenez, D, “Endocytosis Mechanism of Nano Metal-Organic Frameworks for Drug Deliveryˮ, Advanced healthcare materials, 5(17) (2016), 2261–2270. https://doi.org/10.1002/adhm.201600296
[23]    sabel Abánades Lázaro et al., “Mechanistic investigation into the selective anticancer cytotoxicity and immune system nanoparticlesˮ, ACS Applied Materials and Interfaces, 10(6) (2018), 5255–5268. https://doi.org/10.1021/acsami.7b17756
[24]    Filippousi, Maria et al., “Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriersˮ, International Journal of Pharmaceutics, 509(1-2) (2016), 208–218. https://doi.org/10.1016/j.ijpharm.2016.05.048
[25]    Y. Liu et al., “ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapyˮ, Chemical Science, 9(38) (2018), 7505–7509. https://doi.org/10.1039/C8SC02210K
[26]    Hong Dong et al. , “Folic Acid Functionalized Zirconium-Based Metal–Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Deliveryˮ, Chemistry -A Euopean Jornal, 24(64) (2018), 17148–17154. https://doi.org/10.1002/chem.20180415
[27]    Jasmina Hafizovic Cavka et al., “A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stabilityˮ, Journal of the American Chemical Society, 130(42) (2008), 13850–13851. https://doi.org/10.1021/ja8057953
[28]    X. Zhu et al., “Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated releaseˮ, Chemical Communications, 50(63) (2014), 8779–8782. https://doi.org/10.1039/C4CC02570A
[29] Li, Zhen et al. “Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery”, Colloids and surfaces. B, Biointerfaces, 178 (2019), 1-7. https://doi.org/10.1016/j.colsurfb.2019.02.027
[1]      Al Sharabati, M.; Sabouni, R.; Husseini, G.A.,“ Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Reviewˮ, Nanomaterials, 12(277)  (2022). https://doi.org/10.3390/ nano12020277
[2]      P. Tang, R. Wang, and Z. Chen, “In situ growth of Zr-based metal-organic framework UiO-66-NH2 for open-tubular capillary electrochromatographyˮ, Electrophoresis, 39(20) (2018), 2619–2625. https://doi.org/10.1002/elps.201800057
[3]      I. Abánades Lázaro et al., “Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery”, ACS Appl. Mater. Interfaces, 10(37) (2018), 31146–31157. https://doi.org/10.1021/acsami.8b11652
[4]      He, Liangcan et al., “Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapyˮ, Nanomedicine (Lond), 14(10) (2019), 1343-1365. https://doi.org/10.2217/nnm-2018-0347
[5]      Lu, Liangyu et al,“ Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Deliveryˮ, Pharmaceutics, 12(98) (2020). https://doi.org/10.3390/pharmaceutics12020098
[6] El-Shafey, Aziza A M et al. , “Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosisˮ, Materials Science Materials in Medicine, 31(11) (2020), 90. https://doi.org/10.1007/s10856-020-06429-y
[7]      Abánades Lázaro, I., Wells, C. J. R., & Forgan, R. S, “Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery”, Angewandte Chemie (International ed. in English), 59(13) (2020), 5211-5217. https://doi.org/10.1002/anie.201915848
[8]      Abánades Lázaro, Isabel et al, “Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Deliveryˮ, Chem, 2(4) (2017), 561–578. https://doi.org/10.1016/j.chempr.2017.02.005
[9]      Isabel Abánades Lázaro, Ross S. Forgan, “Application of zirconium MOFs in drug delivery and biomedicineˮ, Coordination Chemistry Reviews, 380 (2019), 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
[10]    Gao, Yan et al., “Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residuesˮ, Chromatogr. A, 1652 (2021), 462349. https://doi.org/10.1016/j.chroma.2021.462349
[11]    S. Yang et al., “A new post-synthetic polymerization strategy makes metal-organic frameworks more stableˮ, Chemical Science, 10(17) (2019), 4542–4549. http://dx.doi.org/10.1039/C9SC00135B
[12]    Ratna S. KatiyarPrateek K. Jha, “Molecular simulations in drug delivery : Opportunities and challengesˮ, WIREs computational molecular science, 8(4) (2018), 1–18. https://doi.org/10.1002/wcms.1358
[13]    Zhao, Huai-Xin et al., “Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug deliveryˮ, Chemical science, 7(8) (2016),  5294–5301. https://doi.org/10.1039/C6SC01359G
[14]    Cai, Mengru et al., “Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancerˮ, Pharmaceutics, 12(3) (2020), 232. https://doi.org/10.3390/pharmaceutics12030232.
[15]    C. Orellana-Tavra et al., “Amorphous metal-organic frameworks for drug delivery,” Chemical Communicatons, 51(73) (2015), 13878–13881. http://dx.doi.org/10.1039/C5CC05237H
[16]    P. J. Jodłowski et al., “Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects: The Vivo and in Vitroˮ, ACS Applied Materials & Interfaces, 13(1) (2021), 312–323. https://doi.org/10.1021/acsami.0c21508
[17]    B. Yang, M. Shen, J. Liu, and F. Ren, “Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cellsˮ, Pharmaceutical research, 34(11) (2017), 2440–2450. doi: 10.1007/s11095-017-2253-9
[18]    A. Ray Chowdhuri, D. Bhattacharya, and S. K. Sahu, “Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agentˮ, Dalton Transactions, 45(7) (2016),  2963–2973. https://doi.org/10.1039/C5DT03736K
[19]    M. X. Wu et al., “Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapyˮ, ACS Applied Materials & Interfaces, 10(40) (2018),  34655–34663. doi: 10.1021/acsami.8b13758.
[20]    P. Abasian, S. Khalili, S. Ghanavati, and S. Rahebi, “Polymeric nanocarriers in targeted drug delivery systems : A reviewˮ, polymers advanced technologies, 31(12) (2020), 2939-2954. https://doi.org/10.1002/pat.5031
[21]    S. Rojas et al., “Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration”, ACS Omega, 3(3) (2018), 2994–3003.  https://doi.org/10.1021/acsomega.8b00185
[22]    Orellana-Tavra, C., Mercado, S. A., & Fairen-Jimenez, D, “Endocytosis Mechanism of Nano Metal-Organic Frameworks for Drug Deliveryˮ, Advanced healthcare materials, 5(17) (2016), 2261–2270. https://doi.org/10.1002/adhm.201600296
[23]    sabel Abánades Lázaro et al., “Mechanistic investigation into the selective anticancer cytotoxicity and immune system nanoparticlesˮ, ACS Applied Materials and Interfaces, 10(6) (2018), 5255–5268. https://doi.org/10.1021/acsami.7b17756
[24]    Filippousi, Maria et al., “Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriersˮ, International Journal of Pharmaceutics, 509(1-2) (2016), 208–218. https://doi.org/10.1016/j.ijpharm.2016.05.048
[25]    Y. Liu et al., “ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapyˮ, Chemical Science, 9(38) (2018), 7505–7509. https://doi.org/10.1039/C8SC02210K
[26]    Hong Dong et al. , “Folic Acid Functionalized Zirconium-Based Metal–Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Deliveryˮ, Chemistry -A Euopean Jornal, 24(64) (2018), 17148–17154. https://doi.org/10.1002/chem.20180415
[27]    Jasmina Hafizovic Cavka et al., “A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stabilityˮ, Journal of the American Chemical Society, 130(42) (2008), 13850–13851. https://doi.org/10.1021/ja8057953
[28]    X. Zhu et al., “Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated releaseˮ, Chemical Communications, 50(63) (2014), 8779–8782. https://doi.org/10.1039/C4CC02570A
[29] Li, Zhen et al. “Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery”, Colloids and surfaces. B, Biointerfaces, 178 (2019), 1-7. https://doi.org/10.1016/j.colsurfb.2019.02.027
[1]      Al Sharabati, M.; Sabouni, R.; Husseini, G.A.,“ Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Reviewˮ, Nanomaterials, 12(277)  (2022). https://doi.org/10.3390/ nano12020277
[2]      P. Tang, R. Wang, and Z. Chen, “In situ growth of Zr-based metal-organic framework UiO-66-NH2 for open-tubular capillary electrochromatographyˮ, Electrophoresis, 39(20) (2018), 2619–2625. https://doi.org/10.1002/elps.201800057
[3]      I. Abánades Lázaro et al., “Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery”, ACS Appl. Mater. Interfaces, 10(37) (2018), 31146–31157. https://doi.org/10.1021/acsami.8b11652
[4]      He, Liangcan et al., “Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapyˮ, Nanomedicine (Lond), 14(10) (2019), 1343-1365. https://doi.org/10.2217/nnm-2018-0347
[5]      Lu, Liangyu et al,“ Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Deliveryˮ, Pharmaceutics, 12(98) (2020). https://doi.org/10.3390/pharmaceutics12020098
[6] El-Shafey, Aziza A M et al. , “Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosisˮ, Materials Science Materials in Medicine, 31(11) (2020), 90. https://doi.org/10.1007/s10856-020-06429-y
[7]      Abánades Lázaro, I., Wells, C. J. R., & Forgan, R. S, “Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery”, Angewandte Chemie (International ed. in English), 59(13) (2020), 5211-5217. https://doi.org/10.1002/anie.201915848
[8]      Abánades Lázaro, Isabel et al, “Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Deliveryˮ, Chem, 2(4) (2017), 561–578. https://doi.org/10.1016/j.chempr.2017.02.005
[9]      Isabel Abánades Lázaro, Ross S. Forgan, “Application of zirconium MOFs in drug delivery and biomedicineˮ, Coordination Chemistry Reviews, 380 (2019), 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
[10]    Gao, Yan et al., “Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residuesˮ, Chromatogr. A, 1652 (2021), 462349. https://doi.org/10.1016/j.chroma.2021.462349
[11]    S. Yang et al., “A new post-synthetic polymerization strategy makes metal-organic frameworks more stableˮ, Chemical Science, 10(17) (2019), 4542–4549. http://dx.doi.org/10.1039/C9SC00135B
[12]    Ratna S. KatiyarPrateek K. Jha, “Molecular simulations in drug delivery : Opportunities and challengesˮ, WIREs computational molecular science, 8(4) (2018), 1–18. https://doi.org/10.1002/wcms.1358
[13]    Zhao, Huai-Xin et al., “Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug deliveryˮ, Chemical science, 7(8) (2016),  5294–5301. https://doi.org/10.1039/C6SC01359G
[14]    Cai, Mengru et al., “Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancerˮ, Pharmaceutics, 12(3) (2020), 232. https://doi.org/10.3390/pharmaceutics12030232.
[15]    C. Orellana-Tavra et al., “Amorphous metal-organic frameworks for drug delivery,” Chemical Communicatons, 51(73) (2015), 13878–13881. http://dx.doi.org/10.1039/C5CC05237H
[16]    P. J. Jodłowski et al., “Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects: The Vivo and in Vitroˮ, ACS Applied Materials & Interfaces, 13(1) (2021), 312–323. https://doi.org/10.1021/acsami.0c21508
[17]    B. Yang, M. Shen, J. Liu, and F. Ren, “Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cellsˮ, Pharmaceutical research, 34(11) (2017), 2440–2450. doi: 10.1007/s11095-017-2253-9
[18]    A. Ray Chowdhuri, D. Bhattacharya, and S. K. Sahu, “Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agentˮ, Dalton Transactions, 45(7) (2016),  2963–2973. https://doi.org/10.1039/C5DT03736K
[19]    M. X. Wu et al., “Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapyˮ, ACS Applied Materials & Interfaces, 10(40) (2018),  34655–34663. doi: 10.1021/acsami.8b13758.
[20]    P. Abasian, S. Khalili, S. Ghanavati, and S. Rahebi, “Polymeric nanocarriers in targeted drug delivery systems : A reviewˮ, polymers advanced technologies, 31(12) (2020), 2939-2954. https://doi.org/10.1002/pat.5031
[21]    S. Rojas et al., “Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration”, ACS Omega, 3(3) (2018), 2994–3003.  https://doi.org/10.1021/acsomega.8b00185
[22]    Orellana-Tavra, C., Mercado, S. A., & Fairen-Jimenez, D, “Endocytosis Mechanism of Nano Metal-Organic Frameworks for Drug Deliveryˮ, Advanced healthcare materials, 5(17) (2016), 2261–2270. https://doi.org/10.1002/adhm.201600296
[23]    sabel Abánades Lázaro et al., “Mechanistic investigation into the selective anticancer cytotoxicity and immune system nanoparticlesˮ, ACS Applied Materials and Interfaces, 10(6) (2018), 5255–5268. https://doi.org/10.1021/acsami.7b17756
[24]    Filippousi, Maria et al., “Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriersˮ, International Journal of Pharmaceutics, 509(1-2) (2016), 208–218. https://doi.org/10.1016/j.ijpharm.2016.05.048
[25]    Y. Liu et al., “ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapyˮ, Chemical Science, 9(38) (2018), 7505–7509. https://doi.org/10.1039/C8SC02210K
[26]    Hong Dong et al. , “Folic Acid Functionalized Zirconium-Based Metal–Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Deliveryˮ, Chemistry -A Euopean Jornal, 24(64) (2018), 17148–17154. https://doi.org/10.1002/chem.20180415
[27]    Jasmina Hafizovic Cavka et al., “A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stabilityˮ, Journal of the American Chemical Society, 130(42) (2008), 13850–13851. https://doi.org/10.1021/ja8057953
[28]    X. Zhu et al., “Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated releaseˮ, Chemical Communications, 50(63) (2014), 8779–8782. https://doi.org/10.1039/C4CC02570A
[29] Li, Zhen et al. “Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery”, Colloids and surfaces. B, Biointerfaces, 178 (2019), 1-7. https://doi.org/10.1016/j.colsurfb.2019.02.027
 
 
 
[1]      Al Sharabati, M.; Sabouni, R.; Husseini, G.A.,“ Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Reviewˮ, Nanomaterials, 12(277)  (2022). https://doi.org/10.3390/ nano12020277
[2]      P. Tang, R. Wang, and Z. Chen, “In situ growth of Zr-based metal-organic framework UiO-66-NH2 for open-tubular capillary electrochromatographyˮ, Electrophoresis, 39(20) (2018), 2619–2625. https://doi.org/10.1002/elps.201800057
[3]      I. Abánades Lázaro et al., “Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery”, ACS Appl. Mater. Interfaces, 10(37) (2018), 31146–31157. https://doi.org/10.1021/acsami.8b11652
[4]      He, Liangcan et al., “Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapyˮ, Nanomedicine (Lond), 14(10) (2019), 1343-1365. https://doi.org/10.2217/nnm-2018-0347
[5]      Lu, Liangyu et al,“ Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Deliveryˮ, Pharmaceutics, 12(98) (2020). https://doi.org/10.3390/pharmaceutics12020098
[6] El-Shafey, Aziza A M et al. , “Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosisˮ, Materials Science Materials in Medicine, 31(11) (2020), 90. https://doi.org/10.1007/s10856-020-06429-y
[7]      Abánades Lázaro, I., Wells, C. J. R., & Forgan, R. S, “Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery”, Angewandte Chemie (International ed. in English), 59(13) (2020), 5211-5217. https://doi.org/10.1002/anie.201915848
[8]      Abánades Lázaro, Isabel et al, “Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Deliveryˮ, Chem, 2(4) (2017), 561–578. https://doi.org/10.1016/j.chempr.2017.02.005
[9]      Isabel Abánades Lázaro, Ross S. Forgan, “Application of zirconium MOFs in drug delivery and biomedicineˮ, Coordination Chemistry Reviews, 380 (2019), 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
[10]    Gao, Yan et al., “Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residuesˮ, Chromatogr. A, 1652 (2021), 462349. https://doi.org/10.1016/j.chroma.2021.462349
[11]    S. Yang et al., “A new post-synthetic polymerization strategy makes metal-organic frameworks more stableˮ, Chemical Science, 10(17) (2019), 4542–4549. http://dx.doi.org/10.1039/C9SC00135B
[12]    Ratna S. KatiyarPrateek K. Jha, “Molecular simulations in drug delivery : Opportunities and challengesˮ, WIREs computational molecular science, 8(4) (2018), 1–18. https://doi.org/10.1002/wcms.1358
[13]    Zhao, Huai-Xin et al., “Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug deliveryˮ, Chemical science, 7(8) (2016),  5294–5301. https://doi.org/10.1039/C6SC01359G
[14]    Cai, Mengru et al., “Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancerˮ, Pharmaceutics, 12(3) (2020), 232. https://doi.org/10.3390/pharmaceutics12030232.
[15]    C. Orellana-Tavra et al., “Amorphous metal-organic frameworks for drug delivery,” Chemical Communicatons, 51(73) (2015), 13878–13881. http://dx.doi.org/10.1039/C5CC05237H
[16]    P. J. Jodłowski et al., “Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects: The Vivo and in Vitroˮ, ACS Applied Materials & Interfaces, 13(1) (2021), 312–323. https://doi.org/10.1021/acsami.0c21508
[17]    B. Yang, M. Shen, J. Liu, and F. Ren, “Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cellsˮ, Pharmaceutical research, 34(11) (2017), 2440–2450. doi: 10.1007/s11095-017-2253-9
[18]    A. Ray Chowdhuri, D. Bhattacharya, and S. K. Sahu, “Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agentˮ, Dalton Transactions, 45(7) (2016),  2963–2973. https://doi.org/10.1039/C5DT03736K
[19]    M. X. Wu et al., “Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapyˮ, ACS Applied Materials & Interfaces, 10(40) (2018),  34655–34663. doi: 10.1021/acsami.8b13758.
[20]    P. Abasian, S. Khalili, S. Ghanavati, and S. Rahebi, “Polymeric nanocarriers in targeted drug delivery systems : A reviewˮ, polymers advanced technologies, 31(12) (2020), 2939-2954. https://doi.org/10.1002/pat.5031
[21]    S. Rojas et al., “Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration”, ACS Omega, 3(3) (2018), 2994–3003.  https://doi.org/10.1021/acsomega.8b00185
[22]    Orellana-Tavra, C., Mercado, S. A., & Fairen-Jimenez, D, “Endocytosis Mechanism of Nano Metal-Organic Frameworks for Drug Deliveryˮ, Advanced healthcare materials, 5(17) (2016), 2261–2270. https://doi.org/10.1002/adhm.201600296
[23]    sabel Abánades Lázaro et al., “Mechanistic investigation into the selective anticancer cytotoxicity and immune system nanoparticlesˮ, ACS Applied Materials and Interfaces, 10(6) (2018), 5255–5268. https://doi.org/10.1021/acsami.7b17756
[24]    Filippousi, Maria et al., “Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriersˮ, International Journal of Pharmaceutics, 509(1-2) (2016), 208–218. https://doi.org/10.1016/j.ijpharm.2016.05.048
[25]    Y. Liu et al., “ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapyˮ, Chemical Science, 9(38) (2018), 7505–7509. https://doi.org/10.1039/C8SC02210K
[26]    Hong Dong et al. , “Folic Acid Functionalized Zirconium-Based Metal–Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Deliveryˮ, Chemistry -A Euopean Jornal, 24(64) (2018), 17148–17154. https://doi.org/10.1002/chem.20180415
[27]    Jasmina Hafizovic Cavka et al., “A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stabilityˮ, Journal of the American Chemical Society, 130(42) (2008), 13850–13851. https://doi.org/10.1021/ja8057953
[28]    X. Zhu et al., “Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated releaseˮ, Chemical Communications, 50(63) (2014), 8779–8782. https://doi.org/10.1039/C4CC02570A
[29] Li, Zhen et al. “Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery”, Colloids and surfaces. B, Biointerfaces, 178 (2019), 1-7. https://doi.org/10.1016/j.colsurfb.2019.02.027
 
 
 
[1]      Al Sharabati, M.; Sabouni, R.; Husseini, G.A.,“ Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Reviewˮ, Nanomaterials, 12(277)  (2022). https://doi.org/10.3390/ nano12020277
[2]      P. Tang, R. Wang, and Z. Chen, “In situ growth of Zr-based metal-organic framework UiO-66-NH2 for open-tubular capillary electrochromatographyˮ, Electrophoresis, 39(20) (2018), 2619–2625. https://doi.org/10.1002/elps.201800057
[3]      I. Abánades Lázaro et al., “Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery”, ACS Appl. Mater. Interfaces, 10(37) (2018), 31146–31157. https://doi.org/10.1021/acsami.8b11652
[4]      He, Liangcan et al., “Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapyˮ, Nanomedicine (Lond), 14(10) (2019), 1343-1365. https://doi.org/10.2217/nnm-2018-0347
[5]      Lu, Liangyu et al,“ Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Deliveryˮ, Pharmaceutics, 12(98) (2020). https://doi.org/10.3390/pharmaceutics12020098
[6] El-Shafey, Aziza A M et al. , “Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosisˮ, Materials Science Materials in Medicine, 31(11) (2020), 90. https://doi.org/10.1007/s10856-020-06429-y
[7]      Abánades Lázaro, I., Wells, C. J. R., & Forgan, R. S, “Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery”, Angewandte Chemie (International ed. in English), 59(13) (2020), 5211-5217. https://doi.org/10.1002/anie.201915848
[8]      Abánades Lázaro, Isabel et al, “Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Deliveryˮ, Chem, 2(4) (2017), 561–578. https://doi.org/10.1016/j.chempr.2017.02.005
[9]      Isabel Abánades Lázaro, Ross S. Forgan, “Application of zirconium MOFs in drug delivery and biomedicineˮ, Coordination Chemistry Reviews, 380 (2019), 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
[10]    Gao, Yan et al., “Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residuesˮ, Chromatogr. A, 1652 (2021), 462349. https://doi.org/10.1016/j.chroma.2021.462349
[11]    S. Yang et al., “A new post-synthetic polymerization strategy makes metal-organic frameworks more stableˮ, Chemical Science, 10(17) (2019), 4542–4549. http://dx.doi.org/10.1039/C9SC00135B
[12]    Ratna S. KatiyarPrateek K. Jha, “Molecular simulations in drug delivery : Opportunities and challengesˮ, WIREs computational molecular science, 8(4) (2018), 1–18. https://doi.org/10.1002/wcms.1358
[13]    Zhao, Huai-Xin et al., “Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug deliveryˮ, Chemical science, 7(8) (2016),  5294–5301. https://doi.org/10.1039/C6SC01359G
[14]    Cai, Mengru et al., “Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancerˮ, Pharmaceutics, 12(3) (2020), 232. https://doi.org/10.3390/pharmaceutics12030232.
[15]    C. Orellana-Tavra et al., “Amorphous metal-organic frameworks for drug delivery,” Chemical Communicatons, 51(73) (2015), 13878–13881. http://dx.doi.org/10.1039/C5CC05237H
[16]    P. J. Jodłowski et al., “Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects: The Vivo and in Vitroˮ, ACS Applied Materials & Interfaces, 13(1) (2021), 312–323. https://doi.org/10.1021/acsami.0c21508
[17]    B. Yang, M. Shen, J. Liu, and F. Ren, “Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cellsˮ, Pharmaceutical research, 34(11) (2017), 2440–2450. doi: 10.1007/s11095-017-2253-9
[18]    A. Ray Chowdhuri, D. Bhattacharya, and S. K. Sahu, “Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agentˮ, Dalton Transactions, 45(7) (2016),  2963–2973. https://doi.org/10.1039/C5DT03736K
[19]    M. X. Wu et al., “Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapyˮ, ACS Applied Materials & Interfaces, 10(40) (2018),  34655–34663. doi: 10.1021/acsami.8b13758.
[20]    P. Abasian, S. Khalili, S. Ghanavati, and S. Rahebi, “Polymeric nanocarriers in targeted drug delivery systems : A reviewˮ, polymers advanced technologies, 31(12) (2020), 2939-2954. https://doi.org/10.1002/pat.5031
[21]    S. Rojas et al., “Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration”, ACS Omega, 3(3) (2018), 2994–3003.  https://doi.org/10.1021/acsomega.8b00185
[22]    Orellana-Tavra, C., Mercado, S. A., & Fairen-Jimenez, D, “Endocytosis Mechanism of Nano Metal-Organic Frameworks for Drug Deliveryˮ, Advanced healthcare materials, 5(17) (2016), 2261–2270. https://doi.org/10.1002/adhm.201600296
[23]    sabel Abánades Lázaro et al., “Mechanistic investigation into the selective anticancer cytotoxicity and immune system nanoparticlesˮ, ACS Applied Materials and Interfaces, 10(6) (2018), 5255–5268. https://doi.org/10.1021/acsami.7b17756
[24]    Filippousi, Maria et al., “Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriersˮ, International Journal of Pharmaceutics, 509(1-2) (2016), 208–218. https://doi.org/10.1016/j.ijpharm.2016.05.048
[25]    Y. Liu et al., “ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapyˮ, Chemical Science, 9(38) (2018), 7505–7509. https://doi.org/10.1039/C8SC02210K
[26]    Hong Dong et al. , “Folic Acid Functionalized Zirconium-Based Metal–Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Deliveryˮ, Chemistry -A Euopean Jornal, 24(64) (2018), 17148–17154. https://doi.org/10.1002/chem.20180415
[27]    Jasmina Hafizovic Cavka et al., “A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stabilityˮ, Journal of the American Chemical Society, 130(42) (2008), 13850–13851. https://doi.org/10.1021/ja8057953
[28]    X. Zhu et al., “Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated releaseˮ, Chemical Communications, 50(63) (2014), 8779–8782. https://doi.org/10.1039/C4CC02570A
[29] Li, Zhen et al. “Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery”, Colloids and surfaces. B, Biointerfaces, 178 (2019), 1-7. https://doi.org/10.1016/j.colsurfb.2019.02.027
[1]      Al Sharabati, M.; Sabouni, R.; Husseini, G.A.,“ Biomedical Applications of Metal−Organic Frameworks for Disease Diagnosis and Drug Delivery: A Reviewˮ, Nanomaterials, 12(277)  (2022). https://doi.org/10.3390/ nano12020277
[2]      P. Tang, R. Wang, and Z. Chen, “In situ growth of Zr-based metal-organic framework UiO-66-NH2 for open-tubular capillary electrochromatographyˮ, Electrophoresis, 39(20) (2018), 2619–2625. https://doi.org/10.1002/elps.201800057
[3]      I. Abánades Lázaro et al., “Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery”, ACS Appl. Mater. Interfaces, 10(37) (2018), 31146–31157. https://doi.org/10.1021/acsami.8b11652
[4]      He, Liangcan et al., “Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapyˮ, Nanomedicine (Lond), 14(10) (2019), 1343-1365. https://doi.org/10.2217/nnm-2018-0347
[5]      Lu, Liangyu et al,“ Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Deliveryˮ, Pharmaceutics, 12(98) (2020). https://doi.org/10.3390/pharmaceutics12020098
[6] El-Shafey, Aziza A M et al. , “Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosisˮ, Materials Science Materials in Medicine, 31(11) (2020), 90. https://doi.org/10.1007/s10856-020-06429-y
[7]      Abánades Lázaro, I., Wells, C. J. R., & Forgan, R. S, “Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery”, Angewandte Chemie (International ed. in English), 59(13) (2020), 5211-5217. https://doi.org/10.1002/anie.201915848
[8]      Abánades Lázaro, Isabel et al, “Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Deliveryˮ, Chem, 2(4) (2017), 561–578. https://doi.org/10.1016/j.chempr.2017.02.005
[9]      Isabel Abánades Lázaro, Ross S. Forgan, “Application of zirconium MOFs in drug delivery and biomedicineˮ, Coordination Chemistry Reviews, 380 (2019), 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
[10]    Gao, Yan et al., “Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residuesˮ, Chromatogr. A, 1652 (2021), 462349. https://doi.org/10.1016/j.chroma.2021.462349
[11]    S. Yang et al., “A new post-synthetic polymerization strategy makes metal-organic frameworks more stableˮ, Chemical Science, 10(17) (2019), 4542–4549. http://dx.doi.org/10.1039/C9SC00135B
[12]    Ratna S. KatiyarPrateek K. Jha, “Molecular simulations in drug delivery : Opportunities and challengesˮ, WIREs computational molecular science, 8(4) (2018), 1–18. https://doi.org/10.1002/wcms.1358
[13]    Zhao, Huai-Xin et al., “Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug deliveryˮ, Chemical science, 7(8) (2016),  5294–5301. https://doi.org/10.1039/C6SC01359G
[14]    Cai, Mengru et al., “Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancerˮ, Pharmaceutics, 12(3) (2020), 232. https://doi.org/10.3390/pharmaceutics12030232.
[15]    C. Orellana-Tavra et al., “Amorphous metal-organic frameworks for drug delivery,” Chemical Communicatons, 51(73) (2015), 13878–13881. http://dx.doi.org/10.1039/C5CC05237H
[16]    P. J. Jodłowski et al., “Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects: The Vivo and in Vitroˮ, ACS Applied Materials & Interfaces, 13(1) (2021), 312–323. https://doi.org/10.1021/acsami.0c21508
[17]    B. Yang, M. Shen, J. Liu, and F. Ren, “Post-Synthetic Modification Nanoscale Metal-Organic Frameworks for Targeted Drug Delivery in Cancer Cellsˮ, Pharmaceutical research, 34(11) (2017), 2440–2450. doi: 10.1007/s11095-017-2253-9
[18]    A. Ray Chowdhuri, D. Bhattacharya, and S. K. Sahu, “Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agentˮ, Dalton Transactions, 45(7) (2016),  2963–2973. https://doi.org/10.1039/C5DT03736K
[19]    M. X. Wu et al., “Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapyˮ, ACS Applied Materials & Interfaces, 10(40) (2018),  34655–34663. doi: 10.1021/acsami.8b13758.
[20]    P. Abasian, S. Khalili, S. Ghanavati, and S. Rahebi, “Polymeric nanocarriers in targeted drug delivery systems : A reviewˮ, polymers advanced technologies, 31(12) (2020), 2939-2954. https://doi.org/10.1002/pat.5031
[21]    S. Rojas et al., “Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration”, ACS Omega, 3(3) (2018), 2994–3003.  https://doi.org/10.1021/acsomega.8b00185
[22]    Orellana-Tavra, C., Mercado, S. A., & Fairen-Jimenez, D, “Endocytosis Mechanism of Nano Metal-Organic Frameworks for Drug Deliveryˮ, Advanced healthcare materials, 5(17) (2016), 2261–2270. https://doi.org/10.1002/adhm.201600296
[23]    sabel Abánades Lázaro et al., “Mechanistic investigation into the selective anticancer cytotoxicity and immune system nanoparticlesˮ, ACS Applied Materials and Interfaces, 10(6) (2018), 5255–5268. https://doi.org/10.1021/acsami.7b17756
[24]    Filippousi, Maria et al., “Biocompatible Zr-based nanoscale MOFs coated with modified poly (ε-caprolactone) as anticancer drug carriersˮ, International Journal of Pharmaceutics, 509(1-2) (2016), 208–218. https://doi.org/10.1016/j.ijpharm.2016.05.048
[25]    Y. Liu et al., “ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapyˮ, Chemical Science, 9(38) (2018), 7505–7509. https://doi.org/10.1039/C8SC02210K
[26]    Hong Dong et al. , “Folic Acid Functionalized Zirconium-Based Metal–Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Deliveryˮ, Chemistry -A Euopean Jornal, 24(64) (2018), 17148–17154. https://doi.org/10.1002/chem.20180415
[27]    Jasmina Hafizovic Cavka et al., “A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stabilityˮ, Journal of the American Chemical Society, 130(42) (2008), 13850–13851. https://doi.org/10.1021/ja8057953
[28]    X. Zhu et al., “Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated releaseˮ, Chemical Communications, 50(63) (2014), 8779–8782. https://doi.org/10.1039/C4CC02570A
[29] Li, Zhen et al. “Functional groups influence and mechanism research of UiO-66-type metal-organic frameworks for ketoprofen delivery”, Colloids and surfaces. B, Biointerfaces, 178 (2019), 1-7. https://doi.org/10.1016/j.colsurfb.2019.02.027